
Appendix: Where Is The Ball: 3D Ball
Trajectory Estimation From 2D Monocu-
lar Tracking

A. Overview
In this Appendix, we present:

• Section B: Simulation details.
• Section C: Dataset details.
• Section D: Implementation details and network architec-

tures.
• Section E: Runtime.
• Section F: Additional results.
• Section G: Failure cases.

B. Simulation details
We used Unity (v2019.3.2f1) with PhysX engine (v3.3) to
simulate ball trajectories. The ground plane was created us-
ing a box collider object, and its center position was set to
the origin. We used a sphere collider object with the prop-
erty “rigid” for the ball. The camera parameters were man-
ually set based on real-world parameters (estimated from
three real datasets). For all simulations, we take into ac-
count the ball’s size, weight, and a plausible range of ball
speeds (by varying the applied force). Other factors, such as
ball spin, aerodynamics, and court type (e.g., grass), are not
considered in the current setup but could be incorporated in
future work to enhance realism of the simulation, as they
influence friction and bounce behavior.

B.1. Mocap and IPL

To simulate a bouncing ball with multiple trajectories, we
applied an impulse force at the beginning and let the ball
bounce until its velocity dropped below a threshold, indi-
cating that it had nearly stopped moving, before applying
a new force. These forces had random magnitudes, and
their directions were randomly generated so that projectile
motions and rolling motions on the ground occurred with
an equal chance. Note that projectile motions are gener-
ated using forces with positive y components, assuming y+
points upward, and rolling motions using forces with zero
y component. The end-of-trajectory flag was only set true
at the time step right before each force was being applied.
The simulation of Mocap and IPL in Unity Game Engine is
shown in Figure 8.

B.2. Tennis

To simulate tennis shots, we built upon an open-source
tennis game [5] and made the gameplay between two
computer-bot players for the ease of data collection. Each
bot has 2 actions: hit and receive. The hitter bot will ran-
domly pick a location on the opponent’s side for the ball to

Figure 8. Unity Game Engine for Mocap, IPL and Simpler
synthetic datasets.

land and make a hit with random angles between 10-20 de-
grees (creating a lob shot or a flat shot). Then, the receiver
bot will receive the ball behind the landing position with
an offset of 5-7 meters away and subsequently becomes the
hitter, and vice versa. The end-of-trajectory flag was only
set true at the time step right before the bots make a hit.
Additionally, the net was created using a box collider object
for filtering out trajectories that are not passing over the net.
The tennis simulation in Unity Game Engine is shown in
Figure 9.

Figure 9. Unity Game Engine for Tennis.

B.3. Synthetic Single-Launch Trajectory Dataset

For comparison with Mocanu et al. [31] and Shen et al.[47],
we matched their input assumptions (single force / sin-
gle trajectory) and simulated single-trajectory sequences by



launching the ball from the origin into a random direction in
the first quadrant (0-90 degrees). Other configurations are
similar to those used in Mocap and IPL.

C. Dataset details
In this section, we explain details of our synthetic datasets
and real datasets. For synthetic datasets, the train, validation
and test sets consist of 5000, 1500 and 500 sequences.

C.1. Synthetic Mocap

In this dataset, the sequence length varies between 85-2,873
time steps with an average of 460 time steps. The space for
the ball to travel is about 11.11 × 10.92m2 with the maxi-
mum height of 1.58m. Each sequence in the train set con-
tains two consecutive trajectories, whereas in the validation
and test sets, each sequence contains 1-7 consecutive trajec-
tories.

C.2. Synthetic IPL

In this dataset, the sequence length varies between 37-949
time steps with an average of 104 time steps. The space
for the ball to travel is about 30 × 75m2 with the maxi-
mum height of 10.42m. Similar to Synthetic Mocap, each
sequence in the train set contains two consecutive trajecto-
ries, while in the validation and test sets, 1-7 consecutive
trajectories.

C.3. Synthetic Tracknet (Tennis)

In this dataset, the sequence length varies between 64-822
time steps with an average of 122 time steps. The space for
the ball to travel is about 18.11 × 37.12m2 with the max-
imum height of 3.87m. All sequences in train, validation,
and test sets contain 3 strokes.

C.4. Synthetic Single-Launch Trajectory Dataset

This synthetic dataset for state-of-the-art comparison with
Mocanu et al. [31] and Shen et al.[47] has 300, 100 and
100 sequences for train, validation and test set. This dataset
has the minimum and maximum sequence lengths of 46 and
106 time steps. The average sequence length of trajectories
is 74 time steps. The space for the ball to travel is about
4.48× 4.43m2 with the maximum height of 0.77m.

C.5. Real IPL

IPL soccer ball detection dataset [17] contains short video
streams of a real soccer match from 6 synchronized cameras
at 25fps. The 2D ball tracking sequences are provided, and
we followed the camera pose estimation pipeline in [39] to
estimate the 3D ball positions used as ground truth. In this
dataset, the 2D track points are sometimes missing for a few
frames, e.g., due to occlusion. We describe our method to
fill in these missing data in section D.1. Then, we used the

completed trajectories as input to our model. There is a total
of 9 remaining sequences that were successfully calibrated
from the above process and satisfied our assumption that
the ball starts and ends on the ground. The minimum and
maximum sequence lengths are 18 and 147 and the average
is 68 time steps. The ball travels within a space of size
30.60× 47.07m2 with the maximum height of 1.66m.

Figure 10. Motion capture studio. The top left is a ping-pong
ball attached with IR reflective materials. The right image is our
motion capture studio used to collect data. The bottom left is one
of the eight IR cameras used in the studio.

C.6. Real Mocap

This dataset captures the bouncing motion of a ping pong
ball in a motion capture studio shown in Figure 10. This
system uses 8 synchronized IR cameras to track IR reflec-
tive stickers that were attached on the ping-pong ball with
a 40mm diameter. The camera frame rate was set to 50fps.
The Mocap system provided the 3D positions of the ping-
pong ball with a 2D tracking sequence from each camera
with known parameters. We used all cameras with their 2D
tracking sequences as input to our method for evaluation.
We generated bouncing motions by throwing the ball up-
ward within this space and kept re-throwing whenever the
ball stopped moving from that last spot. This dataset con-
tains 344 different trajectories, and the maximum number
of consecutive trajectories is 3. The minimum and maxi-
mum sequence lengths are 150 and 907 and the average is
301 time steps. The space for the ball to travel is about
6.21× 3.74m2 and the maximum height is 1.49m.

C.7. Real Tracknet (Tennis)

This dataset [20] contains 81 video clips of 10 tennis
matches captured from a 30FPS broadcast camera. The
2D ball tracking annotations are also provided. We quali-
tatively evaluate our performance on 118 trajectories from
13 clips in one match. The minimum and maximum se-
quence lengths are 18 and 288, and the average is 92 time
steps. Each sequence has a varying number of strokes be-
tween 1 to 10 (with an average of 3 strokes) and the tennis
ball bounces 9 times at most (with an average of 4 bounces).



D. Implementation details / Network architec-
tures

For training, we set (λε, λ3D, λB) = (10, 1, 10) and trained
our networks for 1,400 epochs using Adam optimizer [25]
with a constant learning rate of 0.001 and a batch size of
256. We trained our LSTMs with backpropagation through
time. Note that our trained pipeline can still predict out-
put sequences of arbitrary lengths. We also randomly add
a Gaussian noise to each 2D input location (ut, vt) to simu-
late noisy 2D tracking from a tracking algorithm or human
labels. Results for different levels of noise are reported in
the main paper in Table 5.

Next, we explain the network architectures of:

1. EoT prediction network (LSTMε) in Table 5.
2. Height prediction network (LSTMf, b and LSTMheight) in

Table 6, 7.
3. Refinement network (LSTMrefine) in Table 8.

Note that in these tables, B is the batch size, L is the se-
quence length, and all LeakyReLUs use 0.01 slope.

Table 5. Network architecture of the EoT prediction network
(LSTMε).

Layer Activation Output size

Input - B x L x 4
BiLSTM.0 - B x L x 2 x 64
BiLSTM.1 - B x L x 2 x 64

+ output of BiLSTM.0 (residual)
BiLSTM.2 - B x L x 2 x 64

Concat - B x L x 128
FC.0 Leaky ReLU B x L x 32
FC.1 Leaky ReLU B x L x 32
FC.2 Leaky ReLU B x L x 32
FC.3 Sigmoid B x L x 1

Table 6. Network architecture of the LSTMf, b in height predic-
tion network. Note that we use the same architecture for both the
forward and backward directions.

Layer Activation Output size

Input - B x L x 6
LSTM.0 - B x L x 1 x 64
LSTM.1 - B x L x 1 x 64
LSTM.2 - B x L x 1 x 64
Concat - B x L x 64
FC.0 Leaky ReLU B x L x 32
FC.1 Leaky ReLU B x L x 32
FC.2 Leaky ReLU B x L x 32
FC.3 - B x L x 1

D.1. Filling in missing track points (IPL dataset)

In IPL dataset [17], there are missing data points in some
time steps in the 2D tracking sequences. We solve this prob-
lem with an additional pre-processing step that fills in the

Table 7. Network architecture of the LSTMheight in height predic-
tion network.

Layer Activation Output size

Input - B x L x 5
BiLSTM.0 - B x L x 2 x 64
BiLSTM.1 - B x L x 2 x 64

+ output of BiLSTM.0 (residual)
BiLSTM.2 - B x L x 2 x 64

Concat - B x L x 128
FC.0 Leaky ReLU B x L x 32
FC.1 Leaky ReLU B x L x 32
FC.2 Leaky ReLU B x L x 32
FC.3 - B x L x 1

Table 8. Network architecture of the refinement network.

Layer Activation Output size

Input - B x L x 7
BiLSTM.0 - B x L x 2 x 64
BiLSTM.1 - B x L x 2 x 64

+ output of BiLSTM.0 (residual)
BiLSTM.2 - B x L x 2 x 64

Concat - B x L x 128
FC.0 Leaky ReLU B x L x 32
FC.1 Leaky ReLU B x L x 32
FC.2 Leaky ReLU B x L x 32
FC.3 - B x L x 3

missing points before using the completed sequence as in-
put to our main pipeline and other competing techniques. In
particular, we trained an auto-regressive network also based
on LSTMs that takes as input the temporal difference of 2D
pixel coordinates (∆ut,∆vt) and predicts the difference for
the next time step (∆ut+1,∆vt+1), following [18]. This
network consists of 2 independent directional-LSTMs that
auto-regress the sequence in the forward and backward di-
rections shown in Table 9. The resulting two predicted se-
quences are combined with linear ramp weighting similar to
Eq. 3 in the main paper, to output the final 2D tracking se-
quence. Note that if a tracking data point is available for the
current time step, we simply use it. We trained this network
with the teacher forcing technique [49].

Table 9. Network architecture of the auto-regressive model for
interpolating missing data points. Note that we used the same ar-
chitecture for both forward and backward directions.

Layer Activation Output size

Input - B x L x 2
LSTM.0 - B x L x 64
LSTM.1 - B x L x 64

+ output of LSTM.0 (residual)
LSTM.2 - B x L x 64

+ output of LSTM.0 and LSTM.1 (residual)
LSTM.3 - B x L x 64

FC.0 Leaky ReLU B x L x 64
FC.1 Leaky ReLU B x L x 32
FC.2 Leaky ReLU B x L x 16
FC.3 Leaky ReLU B x L x 8
FC.4 Leaky ReLU B x L x 4
FC.5 - B x L x 2



E. Runtime
We measured runtime on the test set of Simpler Synthetic
dataset (Appendix C.4), which contains 100 trajectories
(7,463 timesteps in total). We tested our method and other
competing techniques on 100 trajectories for 100 times
(10,000 sequences) on a desktop with AMD Ryzen 9 3900X
and a single NVIDIA 2080 super. Our method took an av-
erage of 1.01 ± 0.11ms per frame, which is about 8.6×
faster than the other learning-based Mocanu et al. [31]
(8.7 ± 1ms). The physics-based method, Shen et al. [47],
only requires optimization and is the fastest with an average
runtime of 0.012± 0.003ms per frame.

F. Additional results
In this section, we provide an additional prior work compar-
ison on two real datasets, additional error metrics, as well
as additional qualitative results for three real and three syn-
thetic datasets.

F.1. Comparison with prior work on Real Mocap
and Real IPL

We compare our method to the same state-of-the-art meth-
ods [31, 47] used in Section 4.2 of the main paper, but each
test example in this experiment contains multiple trajecto-
ries due to multiple acting forces (e.g., tennis hits). Note
again that these prior methods are not designed for multiple
trajectories, but we include this experiment for complete-
ness. We performed a fair comparison using a single-launch
trajectory test set in Section 4.2.

Table 10 reports distance NRMSEs on the test sets of
Real Mocap and IPL datasets. Our method achieves signifi-
cantly better NRMSEs with performance gaps of up to 75.4
in Mocap and 13.6 in IPL, but this is expected as these test
scenarios violate their assumptions.

F.2. Results using other NRMSE variants

Table 11 reports different variants of NRMSEs, which are
RMSEs ×100% divided by the trajectory height, area’s
length, area’s width, or the distance to camera, follow-
ing [11]. Here the length and width are the field dimen-
sions (e.g., tennis court (23.27 × 10.97m2) or soccer pitch
(105×69.5m2). We report NRMSEs for distance, based on
the L2 distance on the xyz coordinates, and height, based on
the distance along the y coordinate only. Since our method
may exhibit errors relative to the size of the playing area,
these metrics are important for assessing our performance
for different applications or different world scales. For ex-
ample, when visualizing the soccer ball in the entire soccer
field, errors with respect to the area’s length or width may
be appropriate.

For Real Mocap, we achieve a 0.48% distance NRMSE

with respect to both the area’s length and width. For IPL,
the errors are 1.13% and 1.71% with respect to the soccer
pitch’s dimensions, or 1.13% with respect to the camera dis-
tance, which is about 106m away from the soccer pitch.

F.3. Other quantitative metrics

We show quantitative results from all experiments and ab-
lation studies in RMSEs (in centimeters) in Table 12-16.
Additionally, we report the statistics of ground penetration
in the predicted trajectories on Real Tracknet in Table 17.

F.4. Qualitative results

We present additional qualitative results on synthetic
datasets of Mocap, IPL, and Tracknet in Figure 11, and on
their real counterparts separately in Figures 12-14. Lastly, a
comparison with the state of the art is shown in Figure 15.

G. Failure cases
We observed that our method performs worse on unusual
trajectories that are substantially different from the simu-
lated trajectories. Some rare trajectories in tennis include
volley shots (the player returns the ball before it bounces off
the ground), or when the player strikes near the net, while
in soccer, when the player chests the ball. We show these
failure cases on Mocap, Tracknet (Tennis) and IPL datasets
in Figure 16, 17 and 18.



Table 10. Comparison with prior work on Real Mocap and Real IPL. The numbers are NRMSEs. Note that each test example in these
datasets contains multiple trajectories, which are outside prior work’s assumptions.

Method Real
Mocap IPL

Mocanu et al.[31] 15.92 14.33
Shen et al. [47] 76.09 5.03
Ours 0.68 0.74

Table 11. We report NRMSEs with respect to the trajectory height, area’s length, area’s width, and distance to camera, following Calendre
et al. [11]. *Each row shaded in gray shows the denominators (meter) used to compute each normalized RMSE.

Metric
Synthetic Real

Mocap Tennis IPL Mocap IPL

Distance Height Distance Height Distance Height Distance Height Distance Height

RMSE (cm) 1.33 0.48 8.48 2.25 3.43 0.80 3.83 2.15 119.15 26.04

Trajectory height (m) 1.58 3.87 10.42 1.49 1.66
%NRMSE 0.84 0.30 2.19 0.58 0.33 0.08 2.59 1.45 71.77 15.68

Area’s length (m) 10.92 23.77 75.00 8.00 105.00
%NRMSE 0.12 0.04 0.36 0.09 0.05 0.01 0.48 0.27 1.13 0.25

Area’s width (m) 11.11 10.97 30.00 8.00 69.50
%NRMSE 0.12 0.04 0.77 0.21 0.11 0.03 0.48 0.27 1.71 0.37

Distance to camera (m) 6.37 32.84 105.66 6.37 105.66
%NRMSE 0.21 0.08 0.26 0.07 0.03 0.01 0.60 0.34 1.13 0.25

%NRMSE (RMSE / (max - min)) 0.09 - 0.15 - 0.02 - 1.01 - 1.03 -

Table 12. Ablation study on input/output parameterization. We evaluate our full pipeline with different types of input / output
parameterization. The numbers are RMSEs of distance and height measured in centimeter.

Parameterization Synthetic Real
Mocap Tennis IPL Mocap IPL

Input Output (before refine.) Distance Height Distance Height Distance Height Distance Height Distance Height

Pixel xyz 165.19 9.49 18.43 5.12 117.25 27.44 91.63 28.21 240.81 44.88
height 2.82 0.72 19.29 3.96 13.78 2.98 52.12 24.77 265.79 50.62

Pixel + E xyz 96.13 75.14 34.96 11.57 81.39 17.63 160.22 28.02 221.26 39.41
height 3.54 1.11 16.78 3.46 8.25 1.95 52.36 25.07 273.175 53.17

pground + (φaz, θel)
xyz 8.33 6.03 13.52 3.22 73.7 16.06 51.95 11.92 225.50 44.65

height 4.11 1.29 13.51 2.68 4.53 1.21 28.90 13.67 248.31 47.21

pground + (φsin ,cos
az , θsin ,cos

el )
xyz 2.25 1.18 14.06 3.45 127.58 29.86 21.89 6.04 271.52 55.25

height 13.48 5.47 12.33 2.45 5.78 1.46 6.77 3.50 130.27 27.28

pground + pvertical (Ours) xyz 2.23 1.12 13.02 3.12 83.02 22.59 5.13 2.57 296.55 56.96
height (Ours) 1.33 0.48 8.48 2.25 3.43 0.80 3.83 2.15 119.15 26.04



Table 13. Ablation study on LSTM components. The numbers are RMSEs of distance and height measured in centimeter.

LSTM[∗] components
Synthetic Real

Mocap Tennis IPL Mocap IPL

ε (EoT) f, b height refine Distance Height Distance Height Distance Height Distance Height Distance Height

- ✓ ✓ ✓ 19.40 0.93 18.53 3.63 3.75 0.95 6.16 3.16 228.28 44.52
✓ - ✓ ✓ 3.58 1.05 13.33 2.61 4.30 1.04 4.10 3.35 290.21 56.01
✓ ✓ - ✓ 53.77 30.89 11.92 2.46 182.01 46.23 6.83 3.11 284.33 56.22
✓ ✓ ✓ - 2.80 0.92 11.89 2.37 8.66 1.93 4.71 3.86 272.84 54.21
- ✓ ✓ - 4.96 1.91 20.73 4.17 14.54 3.39 4.92 2.63 374.85 73.09
✓ - ✓ - 3.57 1.04 14.07 2.85 47.87 2.08 6.68 3.58 315.66 60.85
✓ ✓ - - 125.4 53.33 32.01 7.07 555.15 128.91 29.79 16.17 258.76 52.13
✓ ✓ ✓ ✓ 1.33 0.48 8.48 2.25 3.43 0.80 3.83 2.15 119.15 26.04

Table 14. Ablation study on loss terms. We train our full pipeline with each loss term removed and report distance NRMSEs.

Loss Synthetic Real
Mocap Tennis IPL Mocap IPL

no Lε 0.15 0.25 0.06 0.84 1.24
no LB 0.09 0.27 0.05 0.87 1.34
no Lε, LB 0.23 0.29 0.08 0.98 3.16
Ours (all terms) 0.05 0.09 0.01 0.68 0.74

Table 15. Ablation study on loss terms. We train our full pipeline with each loss term removed. The numbers are RMSEs of distance and
height measured in centimeter.

Loss
Synthetic Real

Mocap Tennis IPL Mocap IPL

Distance Height Distance Height Distance Height Distance Height Distance Height

no Lε 7.05 4.86 16.39 3.23 7.80 1.87 4.02 2.26 179.98 36.21
no LB 5.74 4.64 16.73 3.36 8.94 2.34 4.16 2.65 214.28 41.86
no Lε, LB 9.03 3.4 17.46 3.5 15.61 3.38 4.2 2.45 439.63 86.29
Ours (all terms) 1.33 0.48 8.48 2.25 3.43 0.80 3.83 2.15 119.15 26.04

Table 16. Comparison with prior work on Synthetic Mocap. The numbers are RMSEs of distance and height measured in centimeter
for varying levels of noise in the input 2D trajectory.

Method
Synthetic Mocap

No noise ±5 pixels ±10 pixels ±15 pixels ±20 pixels ±25 pixels

Distance Height Distance Height Distance Height Distance Height Distance Height Distance Height

Mocanu et al.[31] 8.58 6.44 8.62 6.45 8.72 6.50 8.91 7.11 9.21 7.45 9.41 7.72
Shen et al. [47] 1.83 1.37 2.10 1.50 2.80 1.83 3.75 2.34 4.86 2.96 5.65 3.37
Ours 0.60 0.30 0.65 0.32 0.69 0.34 0.97 0.36 1.30 0.38 1.66 0.45

Table 17. Qualitative analysis on Real Tracknet (Tennis). We report the statistics of points mistakenly predicted below ground at
different penetration distances.

Metric Real Tracknet (Tennis)
0-2.5 cm. 2.5-5 cm. 5 - 7.5 cm. 7.5 - 10 cm. 10 - 25 cm. 25 - 50 cm.

#(predicted points below ground) (N=181) 49 51 29 17 34 1

as a percentage of #(ground contact points) (N=236) 20.76% 21.61% 12.29% 7.20% 14.41% 0.42%
as a percentage of #(all points) (N=10,844) 0.45% 0.47% 0.27% 0.16% 0.31% 0.01%



Figure 11. Qualitative results on synthetic datasets. Blue: our predictions. Red: ground truth. The first row is the results from Synthetic
Mocap and each checkerboard block is 75×75 cm2. The second row is the results from Synthetic IPL and each checkerboard block is
250×250 cm2. The last two rows are the results from Synthetic Tennis.



Figure 12. Qualitative results on Real Mocap dataset. Blue: our predictions. Red: ground truth. Each checkerboard block is 75×75
cm2.



Figure 13. Qualitative results on Real IPL dataset. Blue: our predictions. Red: ground truth. Each checkerboard block is 250×250
cm2.



Figure 14. Qualitative results on Real Tracknet (Tennis) dataset.



Figure 15. State-of-the-art comparison with a learning-based approach Mocanu et al.[31] and a physics-based approach Shen et al.[47]
on a simplified test trajectory that matches their requirements. Each row uses a different noise level. Our predictions are shown in blue,
prior work in yellow, and ground truth in red. Each checkerboard block is 50×50 cm2.



Figure 16. Failure cases on Real Tracknet(Tennis) dataset. This trajectory comes from a volley shot close to the net where the ball
bounces right back without hitting the ground, but our prediction shows some slight drop in the ball’s height.

Figure 17. Failure cases on Real Mocap dataset. Blue: our predictions. Red: ground truth. Each checkerboard block is 75×75 cm2.

Figure 18. Failure cases on Real IPL(soccer) dataset. When a soccer player chests the ball, the trajectory may look very different from
the training trajectories, leading to these errors. Blue: our predictions. Red: ground truth. Each checkerboard block is 250×250 cm2.



Table 18. How helpful is simulated data? We report NRMSEs
± S.E. of training on Real and Synthetic Mocap, as well as on
Synthetic then fine-tuning on Real. Using Synthetic for training or
pre-training outperforms training on Real alone.

Training data Distance Height

Real Mocap 0.29± 0.04 7.99 ±1.68
Synthetic Mocap 0.17± 0.01 7.12± 1.14
Synthetic + Real (Fine-tuned) 0.08± 0.004 5.23± 1.06


