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This supplementary material contains the following ap-
pendices as referred in the main paper:

• A More experiments and details with mask-based track-
ing systems

• B State-of-the-art comparison with transformer-based
and other types of method

• C Additional visual examples
• D The running speed and heaviness of mask

A. More experiments and details with mask-
based tracking systems

We evaluate DEVA [3], Grounded SAM 2 [15, 21], and
MASA [13] on MOT datasets, saving each bounding box
output per frame in MOT format [6].

We conduct additional experiments to thoroughly ex-
plore the performance differences between the mask-based
tracking systems and our McByte. These include several
variants on the MOT17 [19] validation set, as well as exper-
iments on the DanceTrack [22] validation set, analogous to
the ones presented in the main paper.

Tab. 1 presents various experimental variants on the
MOT17 validation set, where different detectors and param-
eters are used. The variants marked with ‡ correspond to
those discussed in the main paper on SportsMOT [5].

For DEVA, we first run the default settings using the
Grounding Dino [15] detector with the ”person” prompt and
a confidence threshold of 0.35 to accept bounding boxes.
Then, we replace it with the YOLOX [10] detector, trained
on the MOT17 dataset from our baseline [27]. We test two
threshold values, 0.6 and 0.7. In our baseline, initialization
of the new tracklets happens for the values 0.1 higher than
the high confidence detection threshold. As we consider the
default value of 0.6 for the latter (Sec. 4.1 in the main pa-
per), we also experiment with the value of 0.7 with DEVA
and other mask based systems.

For Grounded SAM 2 [15, 21], we use the ”Video Object
Tracking with Continuous ID” version as specified on its

GitHub page1. Initially, we run it with the original settings,
using the Grounding Dino [15] detector with the ”person”
prompt, a confidence detection threshold of 0.25, and a step
value of 20. The step value defines how often detections are
processed (e.g., every 20th frame) to create mask tracklets,
functioning as the segment length (we refer to tracking ob-
jects in segments mentioned in the main paper, Sec. 2.3).
We then test an analogous variant with a step value of 100.

Next, we integrate YOLOX detector with weights from
our baseline [27] and run variants with step values of 20,
100, and 1 (thus processing detections every frame), using
different bounding box allowance thresholds of 0.25, 0.6,
and 0.7 (analogous to the DEVA experiments). We also at-
tempt to run a variant with the segment length set to the en-
tire video sequence, but it fails due to excessive GPU mem-
ory requirements. Additionally, this setup would only track
objects visible in the first frame.

MASA [13] offers several models for inference. We test
variants using two different feature backbones: Ground-
ingDINO [15] (GDino) and ResNet-50 [11] (R50). For the
GroundingDINO variant, we use the Detic-SwinB detec-
tor [16, 30] with the ”person” prompt, applying the orig-
inal detection confidence threshold of 0.2. We also run
a similar variant with the YOLOX detector trained on the
COCO [14] dataset, as provided by the authors, using a con-
fidence threshold of 0.3, default for this variant.

Further, we incorporate the YOLOX detector with
weights from our baseline [27] and test variants with detec-
tion confidence thresholds of 0.3, 0.6, and 0.7, analogously
to DEVA and Grounded SAM 2. Additionally, we run the
ResNet-50 feature variants with the YOLOX COCO model
(threshold 0.3) and the baseline-pre-trained weights (thresh-
olds 0.3, 0.6, 0.7).

As shown in Tab. 1, McByte outperforms the referenced
mask-based systems, making it more suitable for MOT.

Tab. 2 presents the performance of DEVA, Grounded

1https://github.com/IDEA-Research/Grounded-SAM-
2
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Details HOTA IDF1 MOTA

DEVA

GDino ”person”, th. 0.35 ‡ 31.8 31.3 -89.4
YOLOX ByteTrack, th. 0.6 ‡ 24.7 20.4 -239.7
YOLOX ByteTrack, th. 0.7 27.0 23.7 -187.8

Grounded SAM 2

GDino ”person”, th. 0.25, step 20 ‡ 43.4 47.6 18.4
GDino ”person”, th. 0.25, step 100 44.0 49.0 15.5
YOLOX ByteTrack, th. 0.25, step 20 46.4 51.6 36.0
YOLOX ByteTrack, th. 0.6, step 20 ‡ 47.5 54.1 43.0
YOLOX ByteTrack, th. 0.7, step 20 47.4 54.1 44.3
YOLOX ByteTrack, th. 0.25, step 100 46.8 54.2 30.2
YOLOX ByteTrack, th. 0.6, step 100 47.4 54.9 34.8
YOLOX ByteTrack, th. 0.7, step 100 47.4 54.9 35.9
YOLOX ByteTrack, th. 0.25, step 1 43.0 43.9 36.2
YOLOX ByteTrack, th. 0.6, step 1 44.4 46.5 44.9
YOLOX ByteTrack, th. 0.7, step 1 44.3 46.7 46.5

MASA

GDino feat. Detic-SwinB ”person”, th 0.2 46.8 52.1 24.3
GDino feat. YOLOX COCO, th 0.3 45.4 53.1 36.9
GDino feat. YOLOX ByteTrack, th 0.3 61.8 70.8 71.3
GDino feat. YOLOX ByteTrack, th 0.6 63.4 73.3 73.8
GDino feat. YOLOX ByteTrack, th 0.7 62.5 71.9 72.9
R50 feat. YOLOX COCO, th 0.3 ‡ 45.5 53.6 36.9
R50 feat. YOLOX ByteTrack, th 0.3 62.5 72.0 71.5
R50 feat. YOLOX ByteTrack, th 0.6 ‡ 63.5 73.6 74.0
R50 feat. YOLOX ByteTrack, th 0.7 62.6 72.3 73.0

McByte

McByte (ours) 69.9 82.8 78.5

Table 1. Extended comparison with the other tracking methods using segmentation mask: DEVA [3], Grounded SAM 2 [12, 15] and
MASA [13] on MOT17 validation set [19], while changing their parameters. ‡ denotes the variants reported in the main paper and in
Tab. 2.

Method HOTA IDF1 MOTA

DEVA, original settings 21.9 15.8 -347.1
DEVA, with YOLOX 20.1 13.3 -423.9

Grounded SAM 2, original settings 51.3 48.0 73.5
Grounded SAM 2, with YOLOX 52.9 49.6 81.6

MASA, original settings 38.2 34.9 71.9
MASA, with YOLOX 46.0 41.1 85.6

McByte (ours) 62.3 64.0 89.8

Table 2. Comparison with the other tracking methods using seg-
mentation mask: DEVA [3], Grounded SAM 2 [12, 15] and
MASA [13] on DanceTrack validation set [22]. The reported vari-
ants correspond to the variants with ‡ symbol in Tab. 1

SAM 2, and MASA on the DanceTrack [22] validation
set. The listed variants correspond to those marked with
‡ in Tab. 1 and are the ones reported in the main paper on
SportsMOT.

On DanceTrack, McByte also demonstrates significantly
higher performance, reinforcing its effectiveness and suit-

ability for MOT.

B. State-of-the-art comparison with
transformer-based and other types of
method

There exist MOT methods outside the tracking-by-detection
domain manifesting performance differences, but usually
these methods are not directly comparable, because they re-
quire a lot of training data and might use other detections.
Further, they make certain hypotheses, e.g. global optimiza-
tion on the whole video. At the same time, these methods
might perform visibly worse on some benchmarks as we
discuss below. On the contrary, we stress that McByte per-
forms well on all the discussed benchmarks (Secs. 4.3 and
4.4 of the main paper). McByte is a tracking-by-detection
approach, which is the main focus of our work. For an ad-
ditional reference, though, we also list performance of the
transformer-based, global optimization, and joint detection
and tracking methods.

Tabs. 3 to 5 show extended comparison including other



Method HOTA IDF1 MOTA

Transformer-based

MeMOTR [8] 70.0 71.4 91.5
MOTIP [9] 71.9 75.0 92.9

Joint detection and tracking

FairMOT [26] 49.3 53.5 86.4
CenterTrack [29] 62.7 60.0 90.8

Tracking-by-detection

ByteTrack [27] 64.1 71.4 95.9
MixSort-Byte [5] 65.7 74.1 96.2
OC-SORT [1] 73.7 74.0 96.5
MixSort-OC [5] 74.1 74.4 96.5
GeneralTrack [20] 74.1 76.4 69.8
DiffMOT [17] 76.2 76.1 97.1
McByte (ours) 76.9 77.5 97.2

Table 3. Extended state-of-the-art method comparison on
SportsMOT [5] test set.

Method HOTA IDF1 MOTA

Transformer-based

MOTR [25] 57.8 68.6 73.4
MeMOTR [8] 58.8 71.5 72.8
MOTRv2 [28] 62.0 75.0 78.6
MOTIP [9] 59.2 71.2 75.5

Global optimization

SUSHI [2] 66.5 83.1 81.1

Joint detection and tracking

FairMOT [26] 59.3 72.3 73.7
RelationTrack [24] 61.0 75.8 75.6
CenterTrack [29] 52.2 64.7 67.8

Tracking-by-detection
with parameter tuning per sequence

ByteTrack [27] 63.1 77.3 80.3
MixSort-Byte [5] 64.0 78.7 79.3
StrongSORT++ [7] 64.4 79.5 79.6
OC-SORT [1] 63.2 77.5 78.0
MixSort-OC [5] 63.4 77.8 78.9
Deep OC-SORT [18] 64.9 80.6 79.4
Hybrid-SORT [23] 64.0 78.7 79.9

Tracking-by-detection
without parameter tuning per sequence

ByteTrack [2] 62.8 77.1 78.9
GeneralTrack [20] 64.0 78.3 80.6
DiffMOT [17] 64.2 79.3 79.8
McByte (ours) 64.2 79.4 80.2

Table 4. Extended state-of-the-art method comparison on
MOT17 [19] test set.

types of tracking methods based on the result availability.
All the tracking-by-detection methods use the same object
detector models per dataset.

Tab. 3 presents extended state-of-the-art comparison on

Method HOTA IDF1 MOTA

Transformer-based

MOTR [25] 54.2 51.5 79.7
MeMOTR [8] 63.4 65.5 85.4
MOTRv2 [28] 73.4 76.0 92.1
MOTIP [9] 67.5 72.2 90.3

Global optimization

SUSHI [2] 63.3 63.4 88.7

Joint detection and tracking

FairMOT [26] 39.7 40.8 82.2
CenterTrack [29] 41.8 35.7 86.8

Tracking-by-detection

ByteTrack [27] 47.7 53.9 89.6
MixSort-Byte [5] 46.7 53.0 85.5
OC-SORT [1] 55.1 54.9 92.2
StrongSORT++ [7] 55.6 55.2 91.1
Hybrid-SORT [23] 65.7 67.4 91.8
GeneralTrack[20] 59.2 59.7 91.8
DiffMOT [17] 63.4 64.0 92.7
McByte (ours) 67.1 68.1 92.9

Table 5. Extended state-of-the-art method comparison on Dance-
Track [22] test set.

SportsMOT [5] test set. In this dataset, the number of sub-
jects can vary as due to abrupt camera motion, subjects
can continuously enter and leave the scene. Further, due
to the team sport nature, there are many occlusions and
blur among the tracked objects. Transformer-based meth-
ods cannot handle all the mentioned challenges and perform
lower than most of the tracking-by-detection approaches,
including ours. Joint detection and tracking methods gen-
eralize poorly to this dataset and fall behind the other two
types of tracking methods. Our method can handle the chal-
lenges present in the sport settings and outperforms all the
other methods.

Tab. 4 shows extended state-of-the art comparison on
MOT17 [19] test set. Note that analogously to the main
paper, we also put the result of ByteTrack [27] not being
tuned per sequence as reported in [2] (”ByteTrack [2]”).
Transformer-based methods perform visibly lower than
the tracking-by-detection methods (including ours) as they
struggle with the subjects frequently entering and leaving
the scene. In contrast, SUSHI [2], which is a powerful
global optimization approach, reaches highly satisfying per-
formance. However, it accesses all the video frames at
the same time while processing detections and associating
the tracklets, which makes it impossible to run in online
settings. Current state-of-the-art joint detection and track-
ing methods generally perform lower than the tracking-by-
detection methods. In that paradigm, the detection and asso-
ciation step is performed jointly. In our method, we perform
these two steps separately and focus on the association part.

Tab. 5 presents extended state-of-the-art comparison on



DanceTrack [22] test set. As in this dataset the subjects
remain mostly at the scene, the transformer-based meth-
ods performance is more satisfying. The performance of
transformer-based methods can be both higher [9, 28] or
lower [8, 25] compared to the the tracking-by-detection
methods. For similar reasons, the global optimization
method, SUSHI [2] can also perform higher than the other
tracking-by-detection methods on this dataset, or lower, e.g.
when compared to our method. On this dataset, joint detec-
tion and tracking methods also manifest lower performance
than the tracking-by-detection methods.

C. Additional visual examples
We provide full frame inputs and outputs of the examples
used in the main paper, see Figs. 1 and 2 in this supplemen-
tary material. We also provide a larger version of one figure
from the main paper, see Fig. 3.

In the main paper, we discuss that McByte can han-
dle challenging scenarios due to the temporally propagated
mask signal used in the controlled manner as an association
cue (Sec. 3.3). Fig. 4 in this supplementary material shows
another example of our method handling association of am-
biguous boxes, improving over the baseline. Fig. 5 shows
an example of our method handling longer occlusions in the
crowd.

D. The running speed and heaviness of mask
The running speed of McByte oscillates around 3-5 FPS
over the datasets examined [4, 5, 19, 22] on a single A100
GPU. It is more costly compared to the baseline [27] and
other derived methods, but McByte is more reliable - it gen-
eralizes well on 4 different datasets and we do not tune it per
dataset or per sequence. We believe that it is a good trade-
off. Mask-based tracking is a promising concept and we
believe it will be further optimized in the community.



Figure 1. Full output frames corresponding to Fig. 1 from the main paper. Input image data from [5].

Input frames

McByte (ours)

Baseline

Figure 2. Full input and output frames corresponding to Fig. 4 from the main paper. Input image data from [5].

Baseline McByte

Figure 3. Larger version of Fig. 5 from the main paper. Input image data from [5].



Frame 459 (baseline) Frame 475 (baseline) Frame 459 (McByte) Frame 475 (McByte)

Figure 4. Visual output comparison between the baseline and McByte. With the temporally propagated mask guidance, McByte can handle
the association of an ambiguous set of bounding boxes - see the subjects with IDs 59 and 63 on the output of McByte. Input image data
from [19].

Frame 319 (baseline) Frame 401 (baseline) Frame 319 (McByte) Frame 401 (McByte)

Figure 5. Visual output comparison between the baseline and McByte. With the temporally propagated mask guidance, McByte can handle
longer occlusion in the crowd - see the subject with ID 54 on the output of McByte. Input image data from [19].
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