
MObI: Multimodal Object Inpainting Using Diffusion Models

Supplementary Material

A. Extended Related Work

Multimodal data is crucial for ensuring safety in au-
tonomous driving, and most state-of-the-art perception sys-
tems employ a sensor fusion approach, particularly for tasks
like 3D object detection [15, 28, 33]. However, testing
and developing such safety-critical systems requires vast
amounts of data, which is costly and time-consuming to ob-
tain in the real world. Consequently, there is a growing need
for simulated data, enabling models to be tested efficiently
without requiring on-road vehicle testing.

Copy-and-paste Early efforts in synthetic data genera-
tion relied on copy-and-paste methods. For example, [12]
used depth maps for accurate scaling and positioning when
inserting objects, while later approaches like [8] focused
on achieving patch-level realism through blending, improv-
ing 2D object detection. A more straightforward approach,
presented by [13], naively pastes objects into images with-
out blending and demonstrates its efficacy in improving im-
age segmentation. In autonomous driving, PointAugment-
ing [51] extends this copy-and-paste approach to both cam-
era and lidar data to enhance 3D object detection. Build-
ing on the lidar GT-Paste method [63], it incorporates ideas
from CutMix augmentation [69] while ensuring multimodal
consistency. This method addresses scale mismatches and
occlusions by utilising the lidar point cloud for guidance
during the insertion process. Similarly, MoCa [72] employs
a segmentation network to extract source objects before in-
sertion, instead of directly pasting entire patches. Geomet-
ric consistency in monocular 3D object detection has also
been explored in [27]. While these methods improve object
detection and mitigate class imbalance, their compositing
strategy leads to unrealistic blending, especially in image
space. Furthermore, they lack controllability, such as the
ability to adjust the position and orientation of inserted ob-
jects, limiting their utility for testing.

Image compositing In this work, we aim to improve
upon these approaches by drawing inspiration from re-
cent advancements in image inpainting. Early efforts like
ST-GAN [30] tackled the challenge of unrealistic fore-
ground blending by using GANs [14] with spatial trans-
former networks to recursively predict and apply correc-
tions, achieving natural blending via warp composition.
ObjectStitch [48] leverages diffusion within an edit mask
for smooth patch-level blending. Methods like Paint-
by-Example [64] and AnyDoor [5] extend this capability
by generating entire images conditioned on scene context

and an edit mask, achieving greater semantic coherence.
AnyDoor achieves fine-grained object inpainting by using
SAM [22] for reference segmentation and more advanced
feature extraction techniques. Other notable works include
Magic Insert [45], which enables drag-and-drop object in-
sertion between images with differing styles, and [24],
which adjusts object pose to respect scene affordances. Ob-
jectDrop [57] trains on counterfactual examples to enhance
object insertion. Although these methods improve seamless
and context-aware image compositing, they do not control
the 3D position and orientation of objects in the real world,
a critical requirement for training and testing, nor do they
consider multimodal extensions.

Full scene generation Recent advancements in condi-
tional full-scene generation have yielded impressive re-
sults. BEVControl [65] uses a two-stage method (con-
troller and coordinator) to generate scenes conditioned on
sketches, ensuring accurate foreground and background
content. Text2Street [49] combines bounding box encod-
ing with text conditions, employing a ControlNet-like [70]
architecture for guidance. DrivingDiffusion [26] repre-
sents bounding boxes as layout images passed as an ex-
tra channel in the U-Net [43]. MagicDrive [10] incorpo-
rates bounding boxes and camera parameters alongside text
conditions for full-scene generation, with a cross-view at-
tention module leveraging BEV layouts. SubjectDrive [20]
generates camera videos conditioned on the appearance of
foreground objects. LiDM [41] focuses on lidar scene gen-
eration conditioned on semantic maps, text, and bound-
ing boxes. DriveScape [58] introduces a method to gen-
erate multi-view camera videos conditioned on 3D bound-
ing boxes and maps using a bi-directional modulated trans-
former for spatial and temporal consistency.

Synthetic lidar data generation has also advanced signif-
icantly. LidarGen [74] and LiDM [41] employ diffusion for
lidar generation, with the latter also incorporating seman-
tic maps, bounding boxes, and text. UltraLidar [62] den-
sifies sparse lidar point clouds, while RangeLDM [19] ac-
celerates lidar data generation by converting point clouds
into range images using Hough sampling and enhancing
reconstruction through a range-guided discriminator. Dy-
namicCity [2] generates lidar sequences conditioned on dy-
namic scene layouts, and [60] generates object-level lidar
data, demonstrating its benefits for object detection. How-
ever, these works do not jointly generate camera and lidar
data, and full-scene generation can result in a large domain
gap, particularly for downstream tasks like object detection,
making it challenging to create realistic counterfactuals.



Multimodal object inpainting GenMM [46] represents a
new direction in multimodal object inpainting using a multi-
stage pipeline that ensures temporal consistency. However,
it remains limited in controllability, requiring the reference
to closely align with the insertion angle. Furthermore, it
does not generate lidar and camera modalities jointly, in-
stead focusing on geometric alignment while excluding li-
dar intensity values. We take a similar approach, but pro-
pose an end-to-end method that jointly generates camera
and lidar data for reference-guided multimodal object in-
painting. Our method achieves realistic and consistent mul-
timodal outputs across diverse object angles.

B. Method Details

B.1. Details on image processing

Bounding Box Projection: The bounding boxes from the
source and destination scenes, boxs, boxd → R8→3, are pro-
jected onto the image space using the respective camera
transformations:

box(C)
s

= T(C)
s
·boxs → R8→2

, box(C)
d

= T(C)
d
·boxd → R8→2

.

We randomly crop the source image around the correspond-
ing bounding box in such a way that the projected bounding
box covers at least 20% of the area. We apply the corre-
sponding viewport transformation to boxd.

Edit Mask: The edit region is defined by a binary mask
m(C) → {0, 1}D→D, created by inpainting box(C)

d
onto an

initially all-zero matrix, where the inpainted region is as-
signed values of 1. The complement of this mask is defined
as:

m̄(C) = J↑m(C)
, J → {1}D→D

.

B.2. Details on lidar processing and encoding

We consider the lidar point cloud of the destination scene,
Pd → RN→4, where N represents the number of points and
the four channels correspond to the x, y, z coordinates and
intensity values. The lidar points are projected onto a range
view Rd → R32→1096→2 using the transformation described
below. This transformation is loss-less, except for points
near the end of the lidar sweep that overlap with the begin-
ning due to motion compensation.

Point cloud to range view transformation We consider
the point cloud for a single sweep of the destination scene,
Pd → RN→4, where N represents the number of points, and
the four channels correspond to the x, y, z coordinates and
intensity values. The lidar points are projected onto a range
view Rd → R32→1096→2 using the transformation described
below.

For each point in Pd, the depth (Euclidean distance from
the sensor) is calculated as:

di =
√

x
2
i

+ y
2
i

+ z
2
i
.

Points with depths outside the predefined range [1.4, 54] are
filtered out. The yaw and pitch angles are then computed
as:

yaw
i
= ↑ arctan 2(yi, xi), pitch

i
= arcsin

(
zi

di

)
.

The beam pitch angles {ωk}Hk=1 are chosen as ωk =
0.0232 · xk, where xk → {↑23,↑22, . . . , 8}, to best match
the binning of the nuScenes [3] lidar sensor’s vertical beams
and its field of view. Each point is assigned to the closest
vertical beam based on its pitch angle, determining its yi

vertical coordinate, an integer in the range [0, 31].
The yaw angle is mapped to the horizontal coordinate x

of the range view grid as:

xi =

⌊
yaw

i

ε
· W

2
+

W

2

⌋
,

The final range view representation Rd of the destination
scene encodes depth and intensity for each point projected
onto the H ↓ W grid, where H = 32 denotes the number
of vertical beams, and W = 1096 represents the horizontal
resolution. Unassigned pixels in the range view are set to
a default value. Each point is mapped to a specific pixel
coordinate in the range view.

Note that the transformation is not injective, as some
points overlap at the start and end of the lidar sweep due
to motion compensation; however, this overlap has mini-
mal impact. We additionally store the original pitch and
yaw values for each point assigned to a range view pixel
in matrices R

yaw
d

→ RH→W and R
pitch
d

→ RH→W , respec-
tively. These matrices enhance the inverse transformation
from range view to point cloud by preserving the unraster-
ized angular information.

Range view to point cloud Transformation To recon-
struct the point cloud from the range view, we leverage the
stored unrasterized pitch and yaw matrices, Rpitch

d
→ RH→W

and R
yaw
d

→ RH→W , which preserve the original angular in-
formation for each pixel.

The depth values R
depth
d

→ RH→W are flattened to the
vector d → RN , where N = H ↓ W . Similarly, the pitch
and yaw matrices are flattened to the vectors ω → RN and
ε → RN , representing the pitch and yaw angles for each
pixel in the range view. Using these angular and depth val-
ues, the point cloud Pd → RN→3 is reconstructed as:

px = d · cos(ε) · cos(ω)

py = ↑d · sin(ε) · cos(ω)

pz = d · sin(ω),



where px,py,pz → RN are the vectors of reconstructed x,
y, and z coordinates, respectively. The reconstructed point
cloud Pd is then given by stacking these coordinate vectors
as Pd = [px,py,pz].

By leveraging the stored pitch and yaw matrices, the pro-
cess accurately restores the point cloud while avoiding mis-
alignments introduced by motion compensation. This en-
sures that the reconstructed point cloud aligns perfectly with
the original input, except for the overlapping points we pre-
viously mentioned, which do not get regenerated.

Range view to range image processing We project the
bounding box boxd onto Rd using the coordinate-to-range
transformation, resulting in box(R)

d
→ R8→3, while preserv-

ing the depth of each bounding box point. To enhance
the region of interest, we employ a zoom-in strategy anal-
ogous to that used in the image processing, by cropping
the range view width-wise around box(R)

d
, resulting in a

32 ↓ W
(R) ↓ 2 object-centric range view, and resizing it to

obtain the range image x(R) → RD→D→2. We apply the same
viewport transformation to the bounding box box(R)

d
. The

edit region is defined by a mask m(R) → {0, 1}D→D, which
is created by inpainting the bounding box boxd onto an ini-
tially all-zero matrix, where the inpainted region has values
of 1. The complement of this mask is m̄(R) =

(
J↑m(R)

)
.

Range image reconstruction metrics An important step
towards achieving realistic lidar inpainting is ensuring the
autoencoder can reconstruct the input point cloud with high
fidelity. Since the point cloud to range view transforma-
tion is loss-less, we can focus our attention on evaluating
the quality of reconstructed range views. We restrict our
evaluation to the region within the edit mask m(R) and the
object points from the target range view, selected using the
3D bounding box, see Fig. S8 for examples. For each input
range view X(R) and its reconstruction, D(R)(E (R)(X(R))),
we compute the median depth error and the mean squared
error (MSE) of the intensity values, restricted on the object
points and the edit mask.

Range image encoding We adapt the pre-trained image
VAE [21] of StableDiffusion [42] to the lidar modality
through a series of training-free adaptations and a fine-
tuning step, ablated in Tab. 1.

As a naive solution to encode the lidar modality, we take
the preprocessed range view x(R) → RD→D→2, duplicate the
depth channel, and pass the resulting 3-channel represen-
tation through the image VAE [21]. After discarding one
depth channel and resizing back to 32 ↓ W

(R) ↓ 2 using
nearest neighbour interpolation, we compute reconstruction
errors using the metrics described in Sec. B.2. This naive
approach results in unsatisfactory reconstruction errors.

To address this, we propose three cumulative adaptations
that improve depth and intensity reconstruction for object
points and the extended edit mask. First, we leverage the
higher resolution of x(R) by applying average pooling when
downsizing, which serves as an error correction mechanism.

Next, we observe that the reconstruction error of range
pixel values is proportional to the interval size of their dis-
tribution. Since intensity values follow an exponential dis-
tribution, we normalize intensity i → [0, 255] using the cu-
mulative distribution function (CDF) of the exponential dis-
tribution, choosing ϑ = 4 experimentally:

i
↑ = 2e

↓ω
i

255 ↑ 1 → [↑1, 1]

To enhance object-level depth reconstruction, we apply
depth normalization based on the minimum and maximum
depth of box(R)

d
, scaling the bounding box by 0.1, which

extends the interval the object depth values are distributed
on and, in turn, improves object reconstruction error:

d
↑ =






↑ϖ + 2ϖ · d↓mind
maxd↓mind

if mind ↔ d ↔ maxd

↑1 + (↑(ϖ ↑ 1)) · d+1
mind+1 if ↑ 1 ↔ d < mind

ϖ + (1 ↑ ϖ) · d↓maxd
1↓maxd

if maxd < d ↔ 1

where d is the depth value, ϖ controls range scaling, and
mind, maxd define normalization boundaries within [↑1, 1].
Depth values are originally between [1.4, 54], but are lin-
early normalized to [↑1, 1].

Thirdly, we replace the input and output convolution of
the pre-trained image encoder and decoder, with two resid-
ual blocks, respectively. We now have 2 input and output
channels. We fine-tune the VAE [21] with an additional dis-
criminant [9]. The same normalization and resizing strate-
gies are applied, yielding the best reconstruction metrics for
x̃(R) = resize(D(R)(E (R)(norm(x(R))))).

Finally we encode the range image x(R) to obtain a latent
representation z(R)

0 = E (R)(norm(x(R))). Similarly, we en-
code the lidar environment context x(R) ↗ m̄(R) to obtain a
latent conditioning representation c(R)

env = E (R)(norm(x(R) ↗
m̄(R))).

B.3. Additional training details

We start by training the newly added input and output
adapters of the range autoencoder while keeping the rest
of the image VAE [21] from Stable Diffusion [42] frozen.
This training phase spans 8 epochs (15k steps) with a learn-
ing rate of 4.5 ↓ 10↓5, selecting the checkpoint with the
lowest reconstruction loss.

During fine-tuning of the diffusion model, the autoen-
coders and all layers from the PbE [64] framework re-
main frozen. Only the bounding box encoder, bounding
box adaptation layer, and cross-modal attention layers are
trained over 30 epochs (approximately 90k steps) with a



Reinsertion Replacement

same ref tracked ref in-domain ref cross-domain ref

Method FID↓ LPIPS↓ CLIP-I↑ FID↓ LPIPS↓ CLIP-I↑ FID↓ LPIPS↓ CLIP-I↑ FID↓ LPIPS↓ CLIP-I↑

copy&paste n/a 13.50 0.196 n/a 17.08 0.213 n/a
PbE [64] 7.34 0.131 84.50 7.58 0.135 83.31 9.62 0.148 77.44 10.54 0.150 77.06

MObI (ours) 6.50 0.114 84.94 6.70 0.115 83.50 8.95 0.127 77.50 9.05 0.130 76.00

Table S1. Comparison with image inpainting methods at D = 512 resolution in terms of camera realism.

constant learning rate of 8 ↓ 10↓5 and a batch size of 2
multimodal samples.

Training takes approximately 20 hours on 8x 24GB
NVIDIA A10G or 2x 80GB NVIDIA A100 GPUs. Infer-
ence throughput is about 8 camera+lidar samples per minute
on a single A100.

Sampling Empty Boxes for Augmentation To enhance
augmentation, we sample empty bounding boxes to train the
model to reconstruct missing details. A dedicated database
of 10,000 such boxes is created. For a given scene, an ob-
ject from a different scene is selected, ensuring that tele-
porting the bounding box into the current scene does not re-
sult in 3D overlap or a total 2D IoU overlap exceeding 50%
with other objects. During training, 30% of the samples are
drawn from this database. Black images and boxes with
zero coordinates are used for these samples, enabling the
model to learn how to fill in background details, as shown
in Fig. S7.

Tracked reference sampling Rather than reinserting ob-
jects into the scene using the same reference, we utilize the
temporal structure of the nuScenes dataset [3]. References
for the current object are sampled from a different times-
tamp following the distribution shown in Fig. S6.



Ref. image Original scene Edited scenes

C
am

er
a

Li
D

A
R

de
pt

h
Li

D
A

R
in

te
ns

ity
C

am
er

a
Li

D
A

R
de

pt
h

Li
D

A
R

in
te

ns
ity

Figure S1. Additional examples showcasing our method’s controllability. From left to right: reference image xref extracted from a seperate
source scene, original destination scene (original RGB image x(C), LiDAR range depth x(R)

0 and intensity x(R)
1 ), and edited scenes.



Ref. image Original scene Edited scenes

C
am

er
a

Li
D

A
R

de
pt

h
Li

D
A

R
in

te
ns

ity
C

am
er

a
Li

D
A

R
de

pt
h

Li
D

A
R

in
te

ns
ity

C
am

er
a

Li
D

A
R

de
pt

h
Li

D
A

R
in

te
ns

ity

Figure S2. Additional examples showcasing our method’s controllability. From left to right: reference image xref extracted from a seperate
source scene, original destination scene (original RGB image x(C), LiDAR range depth x(R)

0 and intensity x(R)
1 ), and edited scenes.



Ground Truth Vanilla Ours

Figure S3. Comparison of detection results between the original scene and the same scene with the object shown in red replaced. BEV-
Fusion [33] achieves good detection performance on the object reinserted using our method, while leaving the boxes of the other objects
undisturbed. Interestingly, even though the aspect of the car behind the reinserted object in the third column is changed slightly, it does not
seem to affect detection much. We hypothesise that this is due to the fact that while the camera view is sensitive to occlusions, the range
view is much less so since we reinsert only the points that are in the box used for conditioning, see Sec. 2.3. All detections are filtered
using a score threshold of 0.08.



Original Reference Edited (C) Edited (R) - depth Edited (R) - intensity

Figure S4. Object replacement results using hard references (different weather conditions or time of day, occlusions, etc.). Top three rows:
MObI is able to insert these hard references in the target bounding box successfully while preserving the overall scene consistency. Bottom
three rows: some examples of failure cases (a new pedestrian is hallucinated, the inserted car shows too much motion blur, the lightning is
not coherent with the overall scene).



Original Reference Insertion (C)

(a)

Original Reference Replacement (C)

(b)

Figure S5. Object insertion and replacement with out-of-domain and open-world references for MObI trained only on the pedestrian and
car classes of nuScenes. (a) In the first two examples (top left), MObI inserts the correct object successfully but loses fine appearance
details. In the last two examples (bottom left), MObI inserts a car instead of the object depicted by the reference. (b) In the first three
examples (top right), MObI correctly replaces objects from classes outside of its training set, yet quality degrades. In the last example
(bottom right), the model replaces the motorcycle with a small vehicle, reverting to a familiar class. Note that all examples have been
correctly inserted in the target bounding box with the correct orientation.



Figure S6. The probability density function of the Beta distribu-
tion with parameters ω = 4 and ε = 1, used to sample reference
patches of an object based on the normalized timestamp difference
!t between tracked instances. Patches from further time points are
sampled with higher frequency.

Training input (C) Empty projected box Training output (C)

Figure S7. Empty boxes are sampled during training for data aug-
mentation, with the reference conditioning set to a black image and
the bounding box coordinates set to zero.

O
b

je
c
t

p
ix

e
ls

E
d

it
m

a
s
k

R
a

n
g

e
im

a
g

e

Figure S8. From top to bottom: (i) object-centric range depth image, (ii) range depth context with an edit mask, generated by projecting
the object bounding box onto the range view, and (iii) object mask highlighting pixels corresponding to points within the 3D bounding box.


