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7. VQA Autonomous Driving Datasets

In Table 11 we present the datasets known for VQA in au-
tonomous driving. Only LingoQA fullfills the necessary
conditions for this study: Video modality, video-level an-
notation and publicly available.

8. 3D Detection and Tracking

The first step is to detect and track objects of interest us-
ing Grounded SAM [26]. This model is capable of detect-
ing and tracking arbitrary objects described by text. In this
work, all objects in the vicinity of the ego-vehicle are re-
garded as of interest if they belong to a given class. Track-
ing is crucial for the LLM, as it enables the analysis of
object positions across frames which can lead to detecting
movement patterns, a task which is difficult for the LLM to
perform without instance-specific information. To achieve
this, each object is assigned a cross-frame ID. Segmentation
provides pixel-wise assignment to instances.

It is asummed that only monocular camera information
is available. Consequently, depth estimation is performed
for each pixel in a frame using MiDaS [25]. However,
depth values are relative to other pixels in the same image,
which complicates cross-frame comparisons. To address
this, depth normalization is applied using reference points
known to maintain consistent distances across frames, with
the distance between two points on the hood of the ego-
vehicle used as the normalization metric. Additionally,
shadows can cause errors in depth estimation, and road
points near the ego-vehicle are often obscured by them. De-
spite these challenges, this method provides sufficient rela-
tive approximations of distance to analyze the changes in
object positions over time.

The segmentation process yields depth values for each
pixel of an object, reducing the noise introduced by back-
ground depth estimations. To streamline the input, only
the mean distance for each object is included. Grounded
SAM is outperformed by YOLO 5 [13] when classifying
objects. Therefore, additionally YOLO 5 detects objects of
categories of interest. Between each of YOLOs detection
and those of Grounded SAM, the intersection over union is
calculated. If the value is above 0.35, the detected object by
Grounded SAM is assigned the class determined by YOLO.
If an object detected by YOLO is not detected by Grounded
SAM, it is added using the tracking ID -1.

Figure 5. Example for traffic light detection and state recogni-
tion using the fine-tuned YOLO model provided by KASTEL-
MobilityLab’s. The model is capable of detecting direction spe-
cific traffic lights.

9. Traffic light detection and state recognition
Grounded SAM struggles with detecting the states of traffic
lights, so this task will be handled by a specialized model,
available at KASTEL-MobilityLab’s traffic-light-detection
GitHub repository. This model is a fine-tuned version of
YOLO designed to detect traffic lights, their states, and
additional details such as direction-specific signals. This
model showed superior detection of traffic lights and clas-
sification of states compared to others and has the added
benefit of also providing information about arrows indicat-
ing direction specific traffic lights.

Road sign detection and classification To accurately un-
derstand traffic scenes, it is not enough to know about the
presence of a traffic sign. It is also necessary to determine
its type such that the model can determine the consequences
resulting from its presence. This does not work well using
Grounded SAM. Most standard object detection models al-
low to detect frequently occuring and across countries sim-
ilar signs like stop signs which is also insufficient. An al-
ternative approach is to use the detections from Grounded
SAM to crop the image to the area of the traffic sign and
compare that image pairwise to a database of traffic sign
images. This could be achieved using models like CLIP and
compare the extracted features for the cropped traffic image
and the database images. However, due to CLIP not being
optimized for discriminating between details in traffic signs,
this approach did not work well. On huggingface, there is a
CLIP model1 (CLIP for GTSRB) fine-tuned on the german
traffic sign recognition benchmark (GTSRB)[31] using con-

1https : / / huggingface . co / tanganke / clip - vit -
large-patch14_gtsrb



Dataset Name Modalities Base dataset QA Video-level Annotation descriptionannotation
BDD-X[14] video BDD no yes Action + reasoning
Talk2Car[6] video, point cloud nuScenes no - Instruction for vehicle to execute
SUTD-TrafficQA[37] * video yes yes Driving QA, not from ego perspective
DRAMA[18] * video no yes Driving scene captioning
nuScenes-QA[24] video, point cloud nuScenes yes no Driving QA
NuPrompt[36] video, point cloud nuScenes no yes Object detection
DriveLM[30] video, point cloud nuScenes yes no Driving QA image, Caption Video
Rank2Tell[27] video, point cloud no yes Object importance + Reasoning
MAPLM-QA[2] image, point cloud yes no Driving QA
LINGO-QA[19] video yes yes Driving QA
lmdrive[28] video, point cloud carla-based no - Level of throttle + turning angle
vlaad[23] video bdd yes yes Driving QA
vlaad[23] video hadhri yes yes Driving QA
talk2bev[3] * video, point cloud nuScenes no yes Central scene object using LVLMs
refer-kitti[35] video, point cloud kitti no no Object referral
reason2drive[21] * video, point cloud nuScenes yes yes Object referral + Driving QA
nuScenes-MQA[11] video, point cloud nuScenes no no Object referral
IDKB[16] image yes no Driving QA
CoVLA[1] image, point cloud no yes Driving scene captioning
OmniDrive[34] image, point cloud nuScenes yes no Trajectory QA
TUMTraffic-VideoQA[43] image yes yes Driving QA not from ego perspective

Table 11. Overview of datasets providing language data for driving. Datasets indicated by * are not publicly or only partially available. We
contacted the authors but did not get an answer
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Figure 6. To detect and retrieve the description for arbitrary traffic
signs, first the features for all of the signs and their transforma-
tions are extracted using the CLIP for GTSRB model and saved
in a 3Nx512 matrix. During inference, the detected traffic sign is
cropped from the original scene and fed into CLIP for GTSRB, the
extracted features of 1x512 are pairwise compared to each of the
saved sign features. The detected traffic sign is assigned the sign
category of the sign with the maximum score if the score is above
a threshold. The description for the traffic sign is added to the sign
category to obtain a sign specific prompt.

trastive learning for feature extraction for traffic signs. It is
capable of accurately determining the category for a traffic
sign in a large database.

The advantage of using the CLIP based approach is that
the reference database can be arbitrarily defined depending
on the context. Traffic signs differ between countries which
requires different target signs. The country specific signs
and their corresponding description are publicly available
for example on wikipedia. LingoQA was recorded in the
London for which the signs and their description were re-
trieved from the corresponding wikipedia page2 . The fea-
tures of images are sensitive to the angle of the sign. To
improve the classification performance, each sign is pro-
jected to appear in angles similar to those occurring in traffic
scenarios. The detected sign is assigned the category with
which it has the maximum cosine similarity. If the similar-
ity is below a threshold it will be discarded. The pipeline
to extract the image category is displayed in figure 6. N is
the number of distinct traffic signs in the database, per im-
age 2 additional transformations are added. Each of the 3N
images is embedded using CLIP for GTSRB with a feature
dimensionality of 512. The resulting matrix is saved for fast
comparison with the detected images. During inference, the
retrieval process of the most similar traffic sign is identical
to zero-shot text classification. Instead of comparing the
image to different textual embeddings, here the comparison
is performed with different visual embeddings.

2https://en.wikipedia.org/wiki/Road signs in the United Kingdom



9.1. Prompt example
In Figure 7 an example of a complete prompt is presented

10. Qualitative examples
From Figure 8 2 qualitative examples are shown.



Figure 7. Example prompt describing the scenes objects with textual descriptions. The total prompt consists of a task description, the
question and the description of objects across frames.



Figure 8. Frame of a traffic scene in the LingoQA dataset. The
car in front obscures the traffic light behind it which will become
visible in subsequent frames. The traffic signs indicate a narrow
street ahead and a school being nearby.

Figure 9. In this scene, two pedestrians are crossing the road, with-
out the presence of objects, indicating to them that it is safe to
cross. This poses a significant hazard to the ego-vehicle. At ear-
lier frames in the scene, additionally there were pedestrians visible
on the side walk.



Figure 10. Answer of a combined model to the question: ”Is a pedestrian in the scene?” The ground truth is ”None.” A frame of the
corrresponding video is seen in Figure 8.

Figure 11. Answer of a combined model to the question: ”Is there a traffic light? If yes, what color is displayed?”. The ground truth is
”Yes. It is green.”. A frame of the corrresponding video is seen in Figure 8.

Figure 12. Answer of a combined model to the question: ”Are there any pedestrians crossing the road? If yes, how many?”. The ground
truth is ”Yes, 2: one close to the car, one further away.”. A frame of the corrresponding video is seen in Figure 9.


