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Abstract

Contrastive video-language pretraining has demonstrated
great success in learning rich and robust video representa-
tions. However, deploying such video encoders on compute-
constrained edge devices remains challenging due to their
high computational demands. Additionally, existing mod-
els are typically trained to process only short video clips,
often limited to 4 to 64 frames. In this paper, we intro-
duce AdaVid, a flexible architectural framework designed to
learn efficient video encoders that can dynamically adapt
their computational footprint based on available resources.
At the heart of AdaVid is an adaptive transformer block,
inspired by Matryoshka Representation Learning, which al-
lows the model to adjust its hidden embedding dimension at
inference time. We show that AdaVid-EgoVLP, trained on
video-narration pairs from the large-scale Ego4D dataset,
matches the performance of the standard EgoVLP on short
video-language benchmarks using only half the compute,
and even outperforms EgoVLP when given equal computa-
tional resources. We further explore the trade-off between
frame count and compute on the challenging Diving48 clas-
sification benchmark, showing that AdaVid enables the use
of more frames without exceeding computational limits. To
handle longer videos, we also propose a lightweight hierar-
chical network that aggregates short clip features, achieving
a strong balance between compute efficiency and accuracy
across several long video benchmarks.

1. Introduction
Image-language pretraining [35] has shown remarkable suc-
cess in learning rich image representations that are robust and
transferable to multiple downstream tasks. Inspired by this
success, video-language models [2, 5, 26, 45] have emerged
as a promising direction to learn rich video representations
that are transferable to downstream tasks such as video-
text retrieval, video question answering, action recognition
etc. Typically, both video and text encoders are transformer-
based architectures [2, 37, 45] where compute and memory
requirement increases quadratically with the input number
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Figure 1. A single AdaVid-trained video model facilitate inference
with controllable computational footprint without any postprocess-
ing. It allows one model to adjust its computational demands
dynamically according to the requirements, thereby eliminating the
need to train multiple distinct models.

of tokens. Video encoders are especially compute-inefficient
because even a small number of frames results in a very high
number of tokens. Consequently, these models are trained
by sampling a small number of video frames (typically 4
to 16). This computational and data inefficiency becomes
prohibitive when attempting to train long-form video en-
coders, especially under contrastive learning frameworks
that require larger batch sizes to learn better features. This
limitation also restricts their deployment on edge devices
with constrained computational resources.

Several prior works have focused on developing efficient
transformer architecture, particularly aiming to address the
quadratic complexity of self-attention [4, 17, 22]. Many
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works leverage the redundancy and structure of video in-
put through space-time attention [5], hierarchical model-
ing [1], or memory-based architectures [3]. In this work,
we draw inspiration from the fact that the computational
complexity of transformer is also quadratic with respect to
the token dimension and propose AdaVid, an architectural
framework to encode long videos in an efficient and adap-
tive manner. The key component of AdaVid is an adaptive
transformer block, inspired by Matryoshka Representation
Learning (MRL) [23], that can process input tokens of vary-
ing dimensions by sampling appropriate parameters. This
design offers the flexibility to dynamically adjust the em-
bedding size of each transformer layer during inference. As
shown in Figure 1, one AdaVid-trained video encoder en-
compasses multiple models of different capacities, enabling
the encoding of both long and short videos while accommo-
dating a flexible compute footprint.

To show the effectiveness of AdaVid, we train an adaptive
version of EgoVLP [26] within our proposed framework (re-
ferred to as AdaVid-EgoVLP) on the large-scale Ego4D [14]
video-language dataset. We show that AdaVid-EgoVLP
performs equal or better than vanilla EgoVLP and other
baselines on several benchmarks while using the full embed-
ding dimension. Additionally, we also show that AdaVid-
EgoVLP retains comparable performance on those bench-
marks while operating with low embedding dimension (and
hence low compute resources). We carry out compute vs. ac-
curacy analysis based on varying dimension sizes of different
layers, and provide key insights into these design choices.

We also conduct a compute vs. frame count analysis on
the Diving48 [25] long video classification benchmark and
show that AdaVid enables the model to process more frames
within limited compute while maintaining strong classifi-
cation accuracy. Additionally, we train AdaVid-Agg – a
lightweight aggregator network that can distill the sequence
of AdaVid-EgoVLP embeddings extracted from consecu-
tive video clips, into a single feature vector for the entire
video. Such hierarchical design allows us to train long video-
language models using relatively smaller datasets with long
video annotations. We show that AdaVid-Agg retains sur-
prisingly high accuracy on several long video benchmarks,
even while operating with a fraction of computational re-
sources chosen adaptively at test time. Such ability to adap-
tively change the embedding dimension (and consequently
the FLOPs) is highly desirable for video understanding in
compute-constrained edge devices and wearable devices
where the compute load may also vary from time to time. In
short, our contributions are as follows:
• We propose an adaptive transformer layer capable of pro-

cessing input tokens with varying dimensions. This design
enables a video encoder, composed of these adaptive lay-
ers, to perform inference while accommodating different
computational requirements.

• We introduce AdaVid-EgoVLP – an adaptive variant of
EgoVLP and AdaVid-Agg for short and long video under-
standing, respectively. We demonstrate improved compute
vs. accuracy trade-offs across multiple benchmarks and
also show favorable frame-count vs. compute trade-off on
the Diving48 long video classification benchmark.

• We investigate different training and evaluation config-
urations for choosing dimensions of transformer layers.
We show that gradually decreasing embedding dimension
sizes across layers yields better performance compared to
the alternative approach.

2. Related Work
Efficient Deep Learning Models: Several prior works
have focused on creating compute-efficient deep learning
architectures. Knowledge distillation [18, 37, 39] requires
a two stage process to distill the performance of the big-
ger teacher model into a smaller student model. Methods
like pruning [24, 28] and quantization [38] have been pro-
posed to improve the inference efficiency of deep learning
models, which may potentially lead to a decrease in per-
formance [10]. Recently, transformers [40] have become
the predominant architecture for many pretraining tasks (in-
cluding language [11, 40], image-language [35], and video-
language [2, 26, 45]) due to their ability to leverage larger
datasets and learn richer embeddings from tokenized in-
puts. However, the computational complexity of the attention
mechanism scales quadratically with the number of input
token, potentially rendering current efficiency techniques in-
sufficient. This presents a significant obstacle when deploy-
ing these models in compute-limited environments. Several
prior works have explored methods to improve transformer
efficiency, including sub-quadratic attention [4], token drop-
ping [17], and token resampling [22]. These approaches,
however, often sacrifice accuracy for permanent compute
efficiency. In contrast, AdaVid maintains compute efficiency
when necessary while preserving the accuracy of a standard
transformer when operating at full capacity.

Adaptive Models: Adaptive training to obtain multiple
models from a single trained model have been explored in the
context of CNNs [7, 16, 46] and transformers [9, 19]. Ma-
tryoshka Representation Learning [23] proposed to use adap-
tive dimensions at the final feature vector, while FlexViT [6]
introduced vision transformer with flexible input space. Al-
though these approaches simplify training, they require the
network backbone to operate at full capacity, offering no
computational benefits during inference. MatFormer [12]
proposed to use adaptive computation only for FFN layers
and projected tokens back to full dimension size for self-
attention layers. Since quadratic self-attention is carried out
with full token dimension, the computational benefit of this
design remains limited, particularly in video understanding
tasks where the number of tokens is high. For language

6389



modeling, SHARCS [36] proposed to use a separate router
network to predict the difficulty of a sample, requiring a sep-
arate heuristic-based computation of sample hardness during
every training epoch. More recently, [48] proposed to use
a third elastic student network in DINO [8] image pretrain-
ing and used multiple cross-view distillation losses between
student and teacher models. In contrast, we simplify the
design by incorporating an adaptive embedding dimension
at every transformer layer, without the need for distillation
and heuristic calculations of sample difficulty.

Video-Language Models: Video-language pretrain-
ing [2, 26, 27, 30, 32, 33, 45] has become a key method
for developing rich video embeddings for various down-
stream tasks. Since the video encoders have high memory
and compute footprint, these models are typically trained on
short videos by sampling few (4 to 64) frames. For example,
EgoVLP [26] trains on video-narration pairs of Ego4D [14]
dataset by sampling 4 frames per video sample. This limits
the applicability of such methods on long-form video un-
derstanding and compute-constrained environments. Many
prior works have proposed video specific solutions to re-
duce the compute requirements. Slow-fast networks [13]
uses two separate networks to process video at different
frame-rate whereas sampling-based methods [28, 42, 49]
samples few informative frames. To avoid quadratic global
attention, some works propose efficient attention mecha-
nism [5, 20, 41]. Memory-based architectures [3, 44] pro-
cesses videos in a streaming manner with a memory mech-
anism to store key information of the past. HierVL [1] em-
ploys a hierarchical model where a video is broken into small
video clips and encoded with a standard video encoder [26].
A separate small aggregator network is employed to aggre-
gate segment features into a long video feature. Although
this formulation allows HierVL to train with long videos (up
to 64 frames), it compromises its accuracy on short videos
in favor of long videos.

Our AdaVid framework for efficient video understanding
is orthogonal to these works. AdaVid focuses on training a
model with adaptive compute for compute-contrained edge
devices and wearable devices. AdaVid can leverage the
redundancy in video inputs and learn rich video embeddings
with a fraction of compute compared to baselines. We show
applicability of AdaVid on a video encoder with space-time
attention [26] as well as hierarchical modeling [1].

3. Method

3.1. Preliminary

Video input is denoted as a tensor of size T × 3×H ×W
where T is the input number of frames. Each frame is divided
into patches of size P × P , giving N = HW/P 2 patches
per frame. A common practice is to use H = W = 224
and P = 16 which gives N = 196 patches per frame. Each

patch of each frame is projected into a D-dimensional space
using a linear projector, giving a total TN number of tokens
of dimension D. At every transformer layer, these tokens go
through self-attention and FFN layers. The complexity of
every FFN layer is usually 16ND2. See the Appendix for a
detailed description of FLOPs computation.

Dense Attention: If each transformer layer were to
use vanilla full attention, its compute complexity would be
24TND2 + 4T 2N2D (See Appendix). Typically, a [cls]
token is appended to represent the video embedding, but
since TN >> 1, we ignore it here for brevity. Note that this
formulation is quadratic in N , T , and D.

Space-Time Attention: To avoid calculating dense at-
tention, TimeSformer [5] introduced divided space-time at-
tention where each token first attends to other tokens of the
same frame and then attends to the same-positioned tokens
of other frames. The compute complexity of each space-
time transformer layer is 32TND2 + 4TND(N + T ) (See
Appendix). Since its complexity scales linearly with the
number of frames T , it has been a preferred choice for many
subsequent video encoders like Frozen [2], EgoVLP [26],
etc. However, because of the high constant of the first term,
its relative computational benefits are realized only at a high
(> 32) number of frames which is usually not the case for
most video understanding tasks.

Hierarchical Modeling: To train with longer videos,
some works [1] propose to use hierarchical modeling where
the video is divided into S segments of T/S frames each.
Each segment is encoded independently by a standard video
encoder (like EgoVLP) to give S segment features. This
sequence of S segment features is then aggregated by an-
other network to output a single feature embedding for the
long video. Such hierarchical modeling makes sense from
the perspective of data-efficiency because video modality
has a lot of redundancy in pixel values and distant frames
relate to each other only through high-level semantic con-
cepts (Dense attention or even space-time attention would
be excessive in such cases). However, it does not provide
notable computational benefit over space-time attention be-
cause the effective complexity of each layer of the feature
extractor is 32TND2+4TND(N +T/S) (See Appendix).
The complexity of the hierarchical aggregator is relatively
negligible and can be ignored.

3.2. Adaptive Transformer Layer
Note that the complexity of every transformer component
is also quadratic with D, often with a high constant. Build-
ing on this insight, we propose to train video encoders that
can adaptively use smaller embedding dimension at every
transformer layer during inference.

Consider a transformer layer that processes a sequence
of K tokens (x1, · · · , xK), producing K output tokens
(y1, · · · , yK), where each xi, yi ∈ RD. As shown in Fig-
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Figure 2. AdaVid Framework is designed to train video encoders that facilitate adaptive compute-efficient inference. (a) Key component of
AdaVid is the Adaptive Transformer Layer, which is designed to handle input tokens of varying dimension sizes up to D. During each
training iteration, each layer processes the input tokens with a randomly selected dimension size, enforcing a coarse-to-fine structure in the
model’s weights and activations. This allows an AdaVid-trained model to perform inference with a controllable compute footprint. (b) The
feedforward layer W2 σ(W1x+ b1) + b2 of the transformer can be modified to accommodate input tokens of size D/2 by appropriately
slicing the weight and bias parameters. This approach is also applicable to the affine transformation of layer normalization. (c) In multi-head
attention, input tokens of size D/2 are processed using half the number of heads, rather than reducing the dimension of each head.

ure 2, we adapt its components to handle tokens of smaller
dimension d ≤ D so that a trained adaptive transformer
layer can process a sequence of smaller tokens (x̂1, · · · , x̂K),
where each x̂i ∈ Rd consists of the first d values of xi. It
outputs (ŷ1, · · · , ŷK), where ŷi ∈ Rd retains as much se-
mantic information as yi[1:d] ∈ Rd where yi[1:d] is a vector
of first d values of yi.

This is achieved by making every basic component of
the transformer adaptive. For FFN, every linear projec-
tion of form y = W · x + b, can be adjusted to y[1:d] =
W[1:d,1:d] · x[1:d] + b[1:d], using the upper-left d× d subma-
trix of weight matrix W and first d values of bias vector b.
Similarly, layer normalization LN(x; γ, β) can be adjusted
to LN(x[1:d]; γ[1:d], β[1:d]). For multi-head attention, instead
of reducing the dimension for each head, we reduce the num-
ber of heads [36]. In particular, if the vanilla transformer
layer has D/H heads each with dimension H , the adaptive
transformer layer uses d/H heads. To incorporate this, we
only use d which is a multiple of H in our experiments.

3.3. AdaVid Video-Language Pretraining

We present AdaVid as a general architectural framework
where every transformer layer of any standard video en-
coder can be replaced with our adaptive transformer layer.
In this paper, we show the effectiveness of AdaVid on con-

trastive video-language representation learning for short and
long videos. Specifically, we introduce AdaVid-EgoVLP
and AdaVid-Agg for encoding short and long videos, respec-
tively. These models leverage our adaptive transformer block
to encode videos in a compute-adaptive manner.

AdaVid-EgoVLP: For short videos, we follow the exact
setup of EgoVLP [26] and train its adaptive counterpart
AdaVid-EgoVLP. Its video encoder uses T = 4 frames,
image size H = W = 224, and patch size P = 16 to
tokenize the video clip input. These tokens are processed by
12 adaptive transformer layers with a maximum dimension
size of D = 768, each consisting of an adaptive space-time
attention [5] module followed by an adaptive feedforward
network. We use DistilBERT [37] as our text encoder and
finetune it during our experiments. Following EgoVLP, we
also use EgoNCE [26] loss to train AdaVid-EgoVLP. We
compare AdaVid-EgoVLP with vanilla EgoVLP and other
strong baselines on short video benchmarks and carry out
compute vs. accuracy analysis.

AdaVid-Agg: For long videos, we follow hierarchical
late fusion modeling and train a lightweight AdaVid-Agg
model to aggregate a sequence of consecutive video clip
features extracted from AdaVid-EgoVLP. In particular, we
sample T = 64 frames from the input long video (un-
less mentioned otherwise) and encode S = 16 segments
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Table 1. AdaVid-EgoVLP evaluation configurations. We evaluate
the trained AdaVid-EgoVLP model with different configurations
for embedding dimensions. [768× 12] indicates that all 12 layers
use 768-d tokens. [768 × 4, 576 × 4, 384 × 4] means that first
four layers use 768-d, followed by four layers of 576-d, followed
by final four layers of 384-d. The FLOPs are computed using the
complexity equations provided in Section 3.1 with T = 4.

Config. Layer-wise hidden dimension
FLOPs

(×1010)

d-768 [768× 12] 18.3
d-576 [576× 12] 10.4
d-384 [384× 12] 4.7
d-192 [192× 12] 1.2

d-dec [768× 3, 576× 3, 384× 3, 192× 3] 8.7
d-dec-high [768× 4, 576× 4, 384× 4] 11.2
d-dec-low [576× 4, 384× 4, 192× 4] 5.5

d-inc [192× 3, 384× 3, 576× 3, 768× 3] 8.7
d-inc-high [384× 4, 576× 4, 768× 4] 11.2
d-inc-low [192× 4, 384× 4, 576× 4] 5.5

(each containing 4 consecutive frames) independently us-
ing AdaVid-EgoVLP. AdaVid-Agg aggregates S segment
features into a single feature for the long video. AdaVid-
Agg is implemented as a transformer [40] consisting of 12
transformer layers. Since it operates over a short sequence
of segment features instead of patch tokens, its compute
footprint is negligible compared to the compute required for
AdaVid-EgoVLP feature extraction. Note that our setup is
simpler than HierVL [1] which requires large-scale multi-
node training to jointly learn aggregator and EgoVLP feature
extractor and uses specific losses based on the hierarchical
annotations. In contrast, we do not require hierarchical anno-
tations and train aggregator independently from the feature
extractor using standard InfoNCE [35] loss, and show com-
parable performance to HierVL. We compare AdaVid-Agg
with strong baselines on multiple long video benchmarks.

AdaVid Training: During each iteration of training, an
embedding dimension can be chosen for every adaptive trans-
former layer randomly or based on some strategy. For our ex-
periments, we fix the set of allowed embedding dimensions
to be {D, 3D/4, D/2, D/4} where D is the full embedding
size. If the chosen embedding size is higher than the previ-
ous embedding size, we pad with zeros; if it is lower, then
we simply drop additional dimensions. AdaVid training can
also be viewed as a version of dropout which can provide
additional regularization benefits. It forces a coarse-to-fine
structure on the manifold of the latents and model weights
which can be stripped short during inference based on need.
Note that our focus is not on performance improvement, and
MRL [23] also reported no performance gains over vanilla
training. However, we find that models trained with AdaVid
often outperform their vanilla counterparts despite identical
training setups, likely due to this regularization effect.

AdaVid allows us to train a single model ‘containing’
multiple smaller models of varying capacities and gives us
the flexibility of choosing an embedding dimension at test
time. It is also possible to create a large set of smaller
models by choosing different granularity at each transformer
layer [12], even the ones not observed during training [23].
In our experiment, we show that some strategies of choosing
embedding dimension fare better than others.

4. Experiments
4.1. Dataset
We use large-scale Ego4D [15] dataset which contains 9645
untrimmed videos of varying lengths from 5 sec to 7 hrs, to-
taling 3000 hours of video data. These videos contain daily
human activities captured from an egocentric perspective
using smart glasses. To train AdaVid-EgoVLP, we use a cu-
rated set of ∼4M narrations [26] each covering 1-2 seconds
of video clip. To train AdaVid-Agg, we additionally use
∼100K summaries [1] each covering 5 minutes of videos.

4.2. Evaluation Benchmarks
We evaluate the quality of video-language embeddings on
various zero-shot video-language benchmarks covering short
as well as long videos.

EgoMCQ [26]: Given a text description and 5 short
video clips (1-2 seconds), classify which video aligns with
the text description. It contains ∼40K samples. The metric
is classification accuracy. It is divided into two subparts:
(1) EgoMCQ (inter) where five candidate clips for each text
query are sourced from the whole dataset. This is an easier
setting. (2) EgoMCQ (intra), where the candidate clips for
each text query are sourced from the same video as the
correct video clip. This is a harder setting.

SummaryMCQ [1]: Given a text description and 5
medium-lengthed videos (5 minutes), classify which video
aligns best with the text description. The metric is classifi-
cation accuracy. This is similar to EgoMCQ but for longer
5-minute videos.

Diving-48 [25] is a curated action recognition benchmark
designed to evaluate long-term temporal reasoning in ac-
tion recognition. Each video is categorized into one of 48
classes based on the type of dive, requiring fine-grained
spatio-temporal reasoning over extended temporal contexts.
Unlike many other action recognition datasets, achieving
high classification accuracy on Diving-48 requires process-
ing a larger number of frames.

LongVideoRetrieval: As discussed in [31], creating a
long video-language benchmark to test models’ long video
understanding is a challenging task because many video
benchmarks can be solved adequately by observing only a
few frames. To evaluate the model on even longer videos, we
curate LongVideoRetrieval benchmark by using long video
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Figure 3. AdaVid-EgoVLP on two EgoMCQ benchmarks:
AdaVid-EgoVLP-dec, trained with decreasing dimensions for
deeper layers, performs better than AdaVid-EgoVLP-inc which
was trained with increasing dimensions. AdaVid-EgoVLP-dec
performs better than baselines while using maximum compute re-
sources. The same model also retains high accuracy when evaluated
with low compute evaluation configurations from Table 1.

captions of Ego4D videos provided by [21]. The objective
is to retrieve the corresponding video, based on a given long
textual description, from a database of approximately 1500
long videos, which range in length from a few minutes to
two hours, with an average duration of 29 minutes. Pro-
cessing a small number of video frames is not enough for
LongVideoRetrieval because the captions are long and cover
activities happening throughout the video. The evaluation
metric is recall (R@1, R@5 and R@10).

EgoSchema [31]: Given a 3-minute video and a complex
question with 5 choices, predict the correct answer. This
benchmark was manually curated for long-form video un-
derstanding to make sure that the correct answer cannot be
derived by observing a short video clip from the entire video.
The metric is classification accuracy. Note that this is a
VideoQA benchmark with much more complex language
than our pretraining dataset.

4.3. AdaVid-EgoVLP
We train AdaVid-EgoVLP for 10 epochs on 8 NVIDIA L40S
GPUs with a total batch size of 160, and other hyperparam-

Table 2. Results on EgoMCQ benchmark

Method EgoMCQ (inter) EgoMCQ (intra)

EgoVLP [26] 90.6 57.2
HierVL-Avg [1] 90.3 53.1
HierVL-SA [1] 90.5 52.4
AdaVid-EgoVLP 90.8 59.5

eters the same as EgoVLP. To compensate for our lower
batch size compared to EgoVLP (160 vs. 512), and to speed
up AdaVid training, we initialize our model with EgoVLP
weights and finetune it with adaptive embedding dimensions.
We train a single AdaVid-EgoVLP model and evaluate it us-
ing different configurations with different compute require-
ments as mentioned in Table 1. Apart from standard config-
urations with the same embedding dimension for all layers
(d-768, d-576, d-384, d-192), we also evaluate ‘d-dec*’ con-
figurations where the embedding dimensions decrease for
deeper layers and ‘d-inc*’ where the embedding dimensions
increase for deeper layers.

Choosing Dimensions for AdaVid training: To find the
optimal strategy for varying layer dimensions during training,
we trained two versions: (1) AdaVid-EgoVLP-dec where we
randomly sample layer dimensions during training ensuring
that each layer has an equal or lower dimension than the
previous layer, i.e., gradually decreasing dimension sizes.
We evaluate this model on standard and decreasing config-
urations from Table 1. (2) AdaVid-EgoVLP-inc where we
sample gradually increasing dimensions during training. We
evaluate this model on standard and increasing configura-
tions from Table 1. The results on two subsets of EgoMCQ
benchmark are shown in Figure 3. We can see that AdaVid-
EgoVLP-dec performs better than AdaVid-EgoVLP-inc in
various evaluation settings despite having the same FLOPs.
This result is in line with the results of [36] where the au-
thors used adaptive embedding only at deeper layers. It also
aligns with our intuition that deeper layers can afford to strip
away low-level details and only store high-level concepts
in a smaller subspace. The opposite strategy bottlenecks
the information at early layers and hurts model performance
in a significant manner. We use AdaVid-EgoVLP-dec to
carry out the rest of the analysis, and only use standard and
decreasing configurations from Table 1 for evaluation.

AdaVid-EgoVLP is accurate while being efficient.
Figure 3 also compares AdaVid-EgoVLP with baselines.
EgoVLP is trained using the same architecture and super-
vision, and with a higher batch size. HierVL additionally
uses summary supervision to associate low-level narrations
with high-level activities. Despite that, AdaVid-EgoVLP-
dec outperforms both baselines by a noticeable margin when
using the full embedding size during evaluation as reported
in Table 2. We attribute this improvement to the implicit
dropout-like regularization provided by AdaVid training.

6393



Figure 4. Results on Diving-48: We evaluate AdaVid using various
evaluation configurations from Table 1 with 64 and 128 frames.
With adaptive compute, AdaVid can process more frames efficiently,
outperforming vanilla-trained baselines.

Table 3. Results on Diving-48. The baselines are pretrained on
ImageNet-21K, while the AdaVid models are pretrained on Ego4D.

Method
Num.

Frames
FLOPs
×1010

Top-1
Accuracy

SlowFast-R101 [13] 16 64 77.6
TimeSformer [2] 8 59 74.9
TimeSformer-HR [2] 16 511 78.0
TimeSformer-L [2] 96 714 81.0

AdaVid-EgoVLP-FT (d-dec) 64 140 81.0
AdaVid-EgoVLP-FT (d-dec) 128 285 82.2

Table 4. Results on SummaryMCQ and LongVideoRetrieval

Method SummaryMCQ LongVideoRetrieval

R@1 R@5 R@10

EgoVLP [26] 89.0 7.1 21.3 31.8
HierVL-Avg [1] 95.2 - - -
HierVL-SA [1] 95.4 16.1 48.9 62.8
AdaVid-Agg 95.4 16.6 50.3 66.5

AdaVid-EgoVLP-dec also performs equal to or better than
baselines despite using approximately 0.5x FLOPs from var-
ious configurations as shown in Figure 3. It maintains good
performance even with 0.25x FLOPs, but observes a small
drop at the lowest configuration with 0.06x FLOPs, espe-
cially for EgoMCQ(intra) which requires more fine-grained
video understanding. Although different configurations with
comparable FLOPs show almost similar performance, some
tasks may benefit from an optimized configuration. Overall,
AdaVid allows a single model to exhibit varying levels of
computational efficiency, enabling it to allocate more com-
pute to challenging tasks while maintaining high efficiency
for simpler ones. Such flexibility in a single-trained model
is a unique feature of the AdaVid framework.

AdaVid can process more frames with limited com-
pute: We finetune AdaVid-EgoVLP on the Diving-48 dataset

Figure 5. Results on SummaryMCQ: AdaVid-Agg achieves com-
parable performance to HierVL baselines with full embedding
dimensions, while also demonstrating robust performance with sig-
nificantly reduced computational resources as needed.

Table 5. Results on EgoSchema. Models in gray are pretrained on
signficantly larger corpus of video datasets.

Method FLOPs
×1010

EgoSchema

Subset Fullset

InternVideo [43] 2000+ - 32.1
SeViLA [47] 2000+ 25.7 22.7
LongViViT [34] 1000+ 56.8 33.3
MC-ViT-B [3] 600+ 61.2 42.3
HierVL [1] 293 52.4 41.6

AdaVid-Agg (d-768) 293 56.2 40.9
AdaVid-Agg (d-384) 75 54.2 40.2
AdaVid-Agg (d-192) 20 52.0 38.3

(referred to as AdaVid-EgoVLP-FT) and evaluate it using
different numbers of uniformly sampled frames during infer-
ence. Figure 4 and Table 3 present the results, compared
against TimeSformer [5], which shares the same architecture
as ours but is trained in a standard (non-adaptive) manner,
ensuring a fair comparison. Our results show that AdaVid-
EgoVLP-FT can process up to 128 frames using significantly
less compute, while outperforming the baseline that relies
on much higher computational resources. This shows that
when a task demands processing a larger number of frames
for temporally fine-grained analysis, AdaVid can effectively
scale down the embedding dimension to accommodate more
frames within a fixed compute budget.

4.4. AdaVid-Agg
We train AdaVid-Agg for 10 epochs on 8 NVIDIA L40S
GPUs on Ego4D short narrations (1-2s) as well as long sum-
mary (5 minutes) annotations using a total batch size of
256. AdaVid-Agg is trained on the extracted features of a
pre-trained AdaVid-EgoVLP model where we use different
inference configurations provided in Table 1 to extract fea-
tures of varying granularity. We use a learning rate of 10−5

and decouple weight decay [29] regularization of 0.1 to ac-
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Figure 6. AdaVid-Agg on LongVideoRetrieval: We evaluate AdaVid-Agg on text-to-video retrieval from a database of very long videos.
We evaluate the dimension configurations mentioned in Table 1 using 64, 96, and 128 frames. X-axis shows the compute required to encode
a single long video. AdaVid-Agg outperforms HierVL under various inference settings with less compute.

count for a relatively smaller video summary dataset. Similar
to before, we train a single AdaVid-Agg model and evaluate
it on multiple long video benchmarks. Since AdaVid-Agg
has an extremely small compute footprint relative to the un-
derlying feature extractor AdaVid-EgoVLP, we operate the
aggregator at full capacity and carry out compute vs. accu-
racy analysis by applying different evaluation configurations
( Table 1) on the feature extractor.

Results on SummaryMCQ: We first evaluate AdaVid-
Agg on SummaryMCQ benchmark, which is the long video
counterpart of EgoMCQ benchmark, and compare against
HierVL baselines in Figure 5. Similar to AdaVid-EgoVLP,
AdaVid-Agg matches the performance of HierVL while us-
ing the full embedding dimension as shown in Table 4,
and maintains strong performance even with 0.25x compute.
EgoVLP-Avg baseline independently encodes S = 16 short
segments of the input video and averages their features. Its
significantly worse performance highlights the importance
of temporal aggregator network and long video summary
supervision in both HierVL and AdaVid-Agg.

Results on EgoSchema: In Table 5, we show AdaVid-
Agg accuracy on two subsets of EgoSchema benchmark [31].
Even though strong HierVL baseline jointly trains feature
extractor and aggregator with higher batch size and uses
annotation hierarchy to define additional losses, AdaVid-
Agg shows similar accuracy as HierVL, and more impor-
tantly retains strong performance in low-compute configura-
tions. For example, when operating AdaVid-EgoVLP with
0.25x compute, it shows very small drop in performance.
Even with 0.0625x compute, AdaVid-Agg outperforms many
large video models, trained on much bigger corpus of video
datasets. Note that the questions in EgoSchema benchmark
has complex language structure in contrast to the simpler
narrations and summary annotations of Ego4D on which our
method has been trained. With extensive datasets containing
high-quality annotations, AdaVid has the potential to train
accurate and dynamically efficient video models suitable for
deployment on edge devices.

Results on LongVideoRetrieval: We evaluate AdaVid-
Agg on LongVideoRetrieval benchmark using different eval-
uation configurations. In addition to 64 frames, we also
evaluate our model using 96 and 128 frames, and show our
results in Figure 6. Overall, our single model shows progres-
sively improving retrieval performance when evaluated with
compute resources ranging from 0.2 TFLOPs to 6 TFLOPs.
AdaVid-Agg outperforms HierVL while using equal or even
less compute as shown in Table 4. It is also possible to do
adaptive retrieval [23] where the large set of candidate videos
are ranked using an efficient inference configuration to find
a smaller set of promising candidates that can be reranked
again with more accurate inference with more compute. We
leave this exploration for further research.

5. Conclusion

In this paper, we proposed AdaVid framework as a promising
direction to learn flexible models that can encompass multi-
tudes of big and small models into a single one. We showed
the effectiveness of AdaVid on video-language pretraining
where the video modality has traditionally been compute and
data intensive. Our short video feature extractor, AdaVid-
EgoVLP, serves as a flexible replacement for EgoVLP, while
AdaVid-Agg is an efficient aggregator of short video seg-
ment features. AdaVid models outperform strong baselines
such as HierVL and EgoVLP on both short and long video
benchmarks, while also maintaining strong performance un-
der low-compute settings. We conduct a detailed analysis
of accuracy vs. compute and frame-count vs. compute for
AdaVid models and baselines, offering valuable insights into
leveraging the flexibility of each adaptive layer. We believe
that the AdaVid framework enables the deployment of video-
language models on edge devices, supporting efficient long
video understanding in a compute-efficient manner.
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