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A. FLOPs computation

A.1. Multi-Head Self-Attention

We follow [3] for calculating the total FLOPs of Multi-head
self attention as 8ND2 + 4N2D, where N represents the
number of tokens and D denotes the token dimension.

This computation is detailed as follows: The FLOPs
required for matrix multiplication of sizes (M × N ) and
(N×P ) is 2MNP . For each attention head, each projection
matrix (query, key, value) involves 2×N ×D × D

H FLOPs.
Thus, the total FLOPs for this operation are 6ND2. Each
head computes the dot product between the query and key,
involving 2×N × D

H ×N FLOPs. The total FLOPs for this
step amount to 2N2D Each head also computes the weighted
sum of values, requiring 2×N ×N × D

H FLOPs. Thus, the
total FLOPs for this computation are 2N2D. Finally, the
output projection layer involves 2×N ×D ×D = 2ND2

FLOPs.

A.2. Feed-forward network

The token-wise feed-forward (MLP) layer consists of two
matrix multiplications: The first transformation converts
from dimension D to dimension F , while the second con-
verts from dimension F back to dimension D. Each matrix
multiplication operation involves 2NDF FLOPs. Therefore,
the total number of FLOPs for the feed-forward network
(FFN) is 4NDF . Typically, the value of F is set to 4D,
resulting in a total of 16ND2 FLOPs.

A.3. Transformer Layers for Video Encoder

As mentioned in the paper, input video with T frames are
patchified where each frame has N tokens, giving total TN
number of tokens. These tokens can be processed by multiple
transformer layers, each consisting of an attention module
and a FFN module. If each layer uses Dense Attention, then
its total complexity would be 24TND2 + 4T 2N2D.

Transformer layer with Space-Time Attention contains 3
modules: space attention, time attention and FNN [2]. Space
attention requires T (8ND2 + 4N2D) and time attention

requires N(8TD2 + 4T 2D). Thus, the total complexity of
a space-time layer is 32TND2 + 4TND(N + T ).

For hierarchical modeling, the input video is divided
into S segments of T/S frame each [1], and processed by a
video encoder with space-time attention. This gives effec-
tive complexity of each transformer layer to be 32TND2 +
4TND(N + T/S).

B. Qualitative Results
In Figure 1 and Figure 2, we show visualizations of our
model’s predictions under various evaluation configurations
for EgoMCQ and EgoSchema benchmarks, respectively.

C. AdaVid-Agg Architecture
Figure 3 shows the architecture of the lightweight hier-

archical AdaVid-Agg model. AdaVid-Agg is designed to
encode a sequence of AdaVid-EgoVLP features into the fea-
ture representation for long videos. During the training of
AdaVid-Agg, we extract features from AdaVid-EgoVLP us-
ing various evaluation configurations. This approach enables
the entire pipeline to be compute adaptive during inference.
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Query: “c puts flour in the cabinet.” Query: “c break the egg.”
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Query: “C sets the drilling machine on 

the edge of the plank close to a brick.”
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Query: “C drops the tape measure 

on the wood plank.”
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Figure 1. We show four challenging examples from the EgoMCQ(intra) benchmark, each consisting of a text query and five candidate video
clips. We also show the predictions made by our AdaVid-EgoVLP model under four different evaluation configurations. The results indicate
that the model can do accurate fine-grained video analysis by adaptively increasing its compute.



What is the primary focus of activity in the video and how 

does interaction between c and the child contribute to this?  
 
0: C is making a hat. the child interacts with c by talking to 

her and occasionally touching the hat.

1: C is making a sweater. the child interacts with c by talking 

to her and occasionally touching the sweater.

2: C is making a pair of gloves. the child interacts with c by 

talking to her and occasionally touching the gloves.

3: C is making a blanket. the child interacts with c by talking 

to her and occasionally touching the blanket.

4: C is knitting a scarf. the child interacts with c by talking to 

her and occasionally touching the scarf.
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What is the primary process being undertaken in this 

video, and how does it consist of both repetitive actions 

and brief moments of interpersonal interaction?  
 
0: Currently, c is in the process of making a delightful 

cake.

1: C is making kaliche ladoo balls.

2: Currently, c is in the process of making a delicious pie.

3: Currently, c is in the process of making a delicious 

pizza.

4: C is making a sandwich.
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What are the similarities and differences in c's handling of the 

saxophone throughout the video?  
 
0: C holds the saxophone with both hands when playing it, 

and with her left hand when not playing it.

1: C holds the saxophone with her right hand when playing it, 

and with her left hand when not playing it.

2: C holds the saxophone with both hands at all times.

3: C holds the saxophone with her left hand at all times.

4: C holds the saxophone with her right hand when playing it, 

and with both hands when not playing it.
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What is the primary objective of c's actions throughout the 

video, and how can you concisely describe the two main 

methods he employs?

 
0: Currently, individual c is engaged in cutting down several 

trees.

1: C is clearing brush.

2: Currently, c is meticulously trimming the overgrown 

hedges outside.

3: In the garden, c is diligently removing dead branches 

from trees.

4: C is pruning the fence.
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Figure 2. We show four examples from the EgoSchema VideoQA benchmark, each consisting of a video and a question with 5 candidate
answers. We also show the predictions made by our AdaVid-Agg model under four different evaluation configurations. The results indicate
that the model can do long-form video analysis efficiently by adaptively increasing its compute.
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Figure 3. AdaVid-Agg: A long video is divided into S = 16 shorter segments and encoded using the pretrained AdaVid-EgoVLP model.
The sequence of segment features is then processed by the lightweight AdaVid-Agg transformer model, which predicts a single feature
representation for the entire video. It is important to note that AdaVid-EgoVLP is trained independently and remains frozen during the
training of AdaVid-Agg.
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