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A. FLOPs computation

A.l. Multi-Head Self-Attention

We follow [3] for calculating the total FLOPs of Multi-head
self attention as SN.D? + 4N2D, where N represents the
number of tokens and D denotes the token dimension.

This computation is detailed as follows: The FLOPs
required for matrix multiplication of sizes (M x N) and
(N x P)is 2M N P. For each attention head, each projection
matrix (query, key, value) involves 2 x N x D X % FLOPs.
Thus, the total FLOPs for this operation are 6NV D?. Each
head computes the dot product between the query and key,
involving 2 x N x & x N FLOPs. The total FLOPs for this
step amount to 2N 2D Each head also computes the weighted
sum of values, requiring 2 x N x N x % FLOPs. Thus, the
total FLOPs for this computation are 2N2D. Finally, the
output projection layer involves 2 x N x D x D = 2N D?
FLOPs.

A.2. Feed-forward network

The token-wise feed-forward (MLP) layer consists of two
matrix multiplications: The first transformation converts
from dimension D to dimension F', while the second con-
verts from dimension F' back to dimension D. Each matrix
multiplication operation involves 2N D F' FLOPs. Therefore,
the total number of FLOPs for the feed-forward network
(FFN) is ANDF'. Typically, the value of F is set to 4D,
resulting in a total of 16 N D? FLOPs.

A.3. Transformer Layers for Video Encoder

As mentioned in the paper, input video with 7" frames are
patchified where each frame has N tokens, giving total T'N
number of tokens. These tokens can be processed by multiple
transformer layers, each consisting of an attention module
and a FFN module. If each layer uses Dense Attention, then
its total complexity would be 24T N D? + 4T2N?2D.
Transformer layer with Space-Time Attention contains 3
modules: space attention, time attention and FNN [2]. Space
attention requires 7 (8N D? 4+ 4N2D) and time attention

requires N (87 D? + 4T2D). Thus, the total complexity of
a space-time layer is 32TND? + 4ATND(N + T).

For hierarchical modeling, the input video is divided
into S segments of T'/S frame each [1], and processed by a
video encoder with space-time attention. This gives effec-
tive complexity of each transformer layer to be 32T'N D? +
ATND(N +T/5S).

B. Qualitative Results

In Figure | and Figure 2, we show visualizations of our
model’s predictions under various evaluation configurations
for EgoMCQ and EgoSchema benchmarks, respectively.

C. AdaVid-Agg Architecture

Figure 3 shows the architecture of the lightweight hier-
archical AdaVid-Agg model. AdaVid-Agg is designed to
encode a sequence of AdaVid-EgoVLP features into the fea-
ture representation for long videos. During the training of
AdaVid-Agg, we extract features from AdaVid-EgoVLP us-
ing various evaluation configurations. This approach enables
the entire pipeline to be compute adaptive during inference.
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Figure 1. We show four challenging examples from the EgoMCQ(intra) benchmark, each consisting of a text query and five candidate video
clips. We also show the predictions made by our AdaVid-EgoVLP model under four different evaluation configurations. The results indicate
that the model can do accurate fine-grained video analysis by adaptively increasing its compute.



What is the primary focus of activity in the video and how
does interaction between ¢ and the child contribute to this?

0: C is making a hat. the child interacts with ¢ by talking to

What is the primary process being undertaken in this
video, and how does it consist of both repetitive actions
and brief moments of interpersonal interaction?

her and occasionally touching the hat. ‘d-768 4 v ‘d-768: 1 v
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2: C is making a pair of gloves. the child interacts with ¢ by d-384":4 v 1: C is making kaliche ladoo balls. d-384:1v
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3: C is making a blanket. the child interacts with ¢ by talking
to her and occasionally touching the blanket.

4: C is knitting a scarf. the child interacts with ¢ by talking to
her and occasionally touching the scarf.

What are the similarities and differences in c¢'s handling of the
saxophone throughout the video?

3: Currently, ¢ is in the process of making a delicious
pizza.
4: C is making a sandwich.

What is the primary objective of c's actions throughout the
video, and how can you concisely describe the two main
methods he employs?
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3: C holds the saxophone with her left hand at all times.
4: C holds the saxophone with her right hand when playing it,
and with both hands when not playing it.

hedges outside.

3: In the garden, c is diligently removing dead branches
from trees.

4: Cis pruning the fence.

Figure 2. We show four examples from the EgoSchema VideoQA benchmark, each consisting of a video and a question with 5 candidate
answers. We also show the predictions made by our AdaVid-Agg model under four different evaluation configurations. The results indicate
that the model can do long-form video analysis efficiently by adaptively increasing its compute.
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Figure 3. AdaVid-Agg: A long video is divided into S = 16 shorter segments and encoded using the pretrained AdaVid-EgoVLP model.
The sequence of segment features is then processed by the lightweight AdaVid-Agg transformer model, which predicts a single feature
representation for the entire video. It is important to note that AdaVid-EgoVLP is trained independently and remains frozen during the

training of AdaVid-Agg.
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