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Supplementary Material

In this supplement, we first detail the datasets and mod-
els used, followed by a discussion of the introduced distri-
bution shifts and their design rationale. Next, we evaluate
the impact of various design choices, including layer selec-
tion, downsampling methods, classifiers, and surrogate la-
bel assignment hyperparameters. Finally, we present addi-
tional experimental results with detailed visualizations and
performance metrics to provide deeper insights into the be-
havior and performance of our method.

9. Datasets and Model Details

9.1. EuroSAT

EuroSAT [12] is a scene classification dataset derived
from Sentinel-2 satellite images, covering various loca-
tions across Europe. It contains 27,000 images labeled into
ten land-use and land-cover classes: Annual Crop, Forest,
Herbaceous Vegetation, Highway, Industrial, Pasture, Per-
manent Crop, Residential, River, and Sea/Lake. The images
have a spatial resolution of 10 meters.

We use a ResNet50 model pre-trained on ImageNet,
modified to accept 13 input channels corresponding to
Sentinel-2 spectral bands. The model is fine-tuned with
a learning rate of 0.0001 and a batch size of 128. Train-
ing runs for up to 100 epochs with early stopping after 5
epochs of no improvement. Input images are normalized
using channel-wise mean and standard deviation statistics.

9.2. xBD

xBD [10] is a semantic segmentation dataset for building
damage assessment from satellite imagery. The dataset, col-
lected from Maxar’s Open Data Program, has images with
a spatial resolution below 0.8 meters. It includes pre- and
post-disaster images of hurricanes, floods, wildfires, and
earthquakes, making it suitable for evaluating temporal and
semantic shifts.

We simplify the damage assessment task into binary seg-
mentation by reassigning damage levels: background (0)
and levels 1-2 are grouped, while levels 3-4 form a high-
damage class. This minimizes concept drift and ensures
a fair evaluation of distribution shifts. We train a U-Net
model with a ResNet50 backbone, pre-trained on ImageNet
and configured for 3 input channels. Training uses a batch
size of 32, a learning rate of 0.001, and runs for up to 50
epochs with early stopping after 5 epochs of no improve-
ment. We reserve 10% of the data for validation and nor-
malize the input images by dividing pixel values by 255.

9.3. FTW

We follow the practices of the original study and use a U-
Net model with an EfficientNet-B3 backbone for semantic
segmentation on the FTW dataset. The model is configured
with 8 input channels and outputs 3 classes: background,
field, and field-boundary. We use class weights of [0.04,
0.08, 0.88] to address class imbalance. The learning rate
is set to 0.001, and the loss function is cross-entropy. The
number of filters is set to 64, and neither the backbone nor
the decoder is frozen during training. We set the patience
for early stopping to 100 epochs. The images are normal-
ized by dividing pixel values by 3000.

For the classifier, we use logistic regression with a maxi-
mum number of iterations set to 500. We train the classifier
with 500 ID samples and 1200 WILD samples. The num-
ber of clusters is set to 150, calculated as 0.3 times the total
number of WILD samples. To reassign labels, we use an
ID fraction threshold of 0.1, meaning that a cluster is as-
signed as OOD if ID samples comprise less than 10% of the
total samples in the cluster. The values of 0.3 and 0.1 are
determined based on empirical observations gathered from
extensive experiments on the xBD and EuroSAT datasets.

Figure 7 provides a visual illustration of the input sam-
ples from the WILD set, where the distribution is unknown.
It displays the input Sentinel-2 image pair (Window A and
Window B) alongside the OOD classifier g’s prediction
scores and the DL model f ’s predictions.

9.4. Introducing Distribution Shifts to EuroSAT
and xBD

The combination of EuroSAT and xBD provides a diverse
testbed for evaluating distribution shifts. EuroSAT repre-
sents regional imagery at medium spatial resolution, while
xBD provides global imagery at very high resolution. Their
differences in acquisition times, sensor parameters, process-
ing levels, and the tasks they cover—land-cover classifica-
tion (EuroSAT) and building detection (xBD)—make them
complementary. Additionally, EuroSAT focuses on patch-
level classification, while xBD involves pixel-level segmen-
tation, enabling evaluations across different problem dimen-
sions.

To evaluate our method, we introduce two types of distri-
bution shifts: covariate and semantic (described in Table 1).
Our approach assumes that purposefully rearranging dataset
splits creates measurable shifts between training and testing
sets, driven by the logic of the split design.



EuroSAT Distribution Shifts. Figure 6 shows one ex-
ample from each of EuroSAT’s 10 classes, which differ spa-
tially and semantically. For covariate shifts, we split the
dataset by longitude at the midpoint of its spatial extent,
using the western half for training and the eastern half for
testing. This creates a shift based on spatial proximity.

For semantic shifts, we train the model on 9 classes and
test it on the hold-out class, repeating this process for all
classes. This ensures the model faces unseen scenarios dur-
ing testing, providing a robust evaluation of its ability to
handle semantic shifts.

xBD Distribution Shifts. Figure 5 illustrates the pre-
and post-disaster image pairs in the xBD dataset. Temporal
shifts arise from changes occurring between pre- and post-
disaster images, while spatial and thematic shifts reflect dif-
ferences in how disasters impact regions and leave varying
degrees of visible marks. Using these inherent characteris-
tics, we design covariate shift experiments for xBD.

10. Design Choices
To better understand the impact of various design choices
on the performance of our OOD detection method, we con-
duct a series of ablation studies. Specifically, we explore
four key factors: (1) the choice of layer from which to ex-
tract feature representations (Section 10.1), (2) the method
used to downsample these feature maps (Section 10.2), (3)
the type of binary classifier g used to distinguish between
surrogate-ID and surrogate-OOD samples (Section 10.3),
and (4) the selection of hyperparameters k and T for sur-
rogate label assignment (Section 10.4).

10.1. Which Layer?
Selecting the appropriate layer for activation extraction is
crucial for accurate OOD detection. Prior works have em-
phasized the importance of this choice. For example, ASH
achieves optimal performance on later layers like the penul-
timate layer, as earlier layers suffer from significant per-
formance degradation during pruning [4]. Similarly, ReAct
performs best on the penultimate layer, where more distinc-
tive patterns between ID and OOD data emerge [30]. NAP-
based OOD detection further highlights the variability in
layer effectiveness, dynamically selecting top-performing
layers based on validation accuracy [25]. Consistent with
these findings, we observe that no single layer is universally
optimal across all settings.

We benchmark FPR95 scores for OOD detection across
the first convolutional layer, eight randomly selected inter-
mediate layers, and the last convolutional layer. As shown
in Table 4 for the EuroSAT dataset and Table 5 for the
xBD dataset, layer performance varies significantly. While
late layers often perform well, early and middle layers fre-
quently give competitive results, depending on the dataset

and task. Based on these findings, we select the best-
performing layer for each experiment.

For the large-scale FTW dataset, the lack of distribu-
tion shift information prevents evaluation of layer-specific
performance for OOD detection. Therefore, based on the
observation that many layer benchmarks perform optimally
for middle layers, we select a middle convolutional layer,
specifically ‘decoder.blocks.0.conv1‘ from the U-Net model
with an EfficientNet-B3 backbone.

10.2. Which Downsampling Method?

Having identified the layer to extract internal activations
from, the next step is to look into the effect of downsam-
pling these activations, which can reduce computational
complexity and noise while retaining essential features for
OOD detection. We explored four methods:

1. Mean and standard deviation (Mean Std): Computes
the mean and standard deviation across the spatial di-
mensions (H, W) for each channel, providing two de-
scriptive statistics per feature channel.

2. Average pooling (Avg Pool): Global average pooling
was applied, reducing the activation to a single represen-
tative value per channel by averaging all spatial values.

3. Max pooling (Max Pool): Uses global max pooling to
retain the maximum value from each spatial dimension,
capturing the most prominent feature in each channel.

4. PCA-based reduction (PCA): Applies Principal Com-
ponent Analysis to reshape the activation map into a vec-
tor and projects it into a lower-dimensional space with 10
components.

We summarize the OOD detection performance across
all experiments on the EuroSAT and xBD datasets un-
der different downsampling methods in Table 6, using the
FPR95 metric. Max pooling consistently achieves the best
performance across the majority of experiments, making it
the preferred approach. We attribute its performance to its
ability to retain the most prominent features in each chan-
nel, filtering out less significant information. This focus on
salient patterns likely enhances the OOD classifier’s capac-
ity to distinguish between ID and OOD samples.

10.3. Which Classifier?

The next key design choice is the selection of the binary
classifier g, used to distinguish between surrogate-ID and
surrogate-OOD samples based on their feature representa-
tions. The results, summarized in Table 7, report the mean
performance across all experimental measurements along
with the standard error of the mean to represent confidence
intervals. We select Logistic Regression as it provides the
best tradeoff between classification accuracy and prediction
time. This balance is essential for scaling up the method,
where both efficiency and accuracy are critical.



pre-disaster post-disaster pre-disaster post-disaster

guatemala-volcano hurricane-florence

hurricane-matthew hurricane-michael

hurricane-harvey mexico-earthquake

midwest-flooding palu-tsunami

santa-rosa-wildfire socal-fire

Figure 5. Examples from the xBD dataset, illustrating pre- and post-disaster images. These samples demonstrate the temporal and semantic
differences between pre- and post-disaster scenes, highlighting the challenges posed by distribution shifts.
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Figure 6. Examples from the EuroSAT dataset, with one sample from each class. These images highlight the spatial and semantic
distinctions across classes.
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Figure 7. Deploying TARDIS over FTW dataset: The input samples are from the collected WILD set, where the distribution is unknown.
The figure shows Sentinel-2 images at two different times (planting season and harvesting season — Window A and Window B). When
these windows are fed together into f , the model outputs both the segmentation prediction and the OOD classifier g’s prediction score.

10.4. Surrogate Label Assignment: Hyperparame-
ter Search for k and T

TARDIS relies on a clustering-based approach in the ac-
tivation space to assign surrogate ID and surrogate OOD
labels. This process requires selecting two key parame-
ters: the number of clusters (k) to segment the activation
space, and the ID fraction threshold (T), which determines
whether a cluster is assigned as surrogate ID or surrogate
OOD. Clusters with an ID fraction above T are assigned as

surrogate ID, and those below T are assigned as surrogate
OOD.

The underlying assumption is that samples with simi-
lar distributions lie closer in the activation space than those
from dissimilar distributions. Effectively clustering the ac-
tivation space is critical, as the distributions of WILD sam-
ples are unknown during deployment, and it depends on the
optimal choice of k and T .

To develop insights into selecting k and T, we conduct



controlled experiments on EuroSAT and xBD, where ID and
OOD labels are known. In these experiments, we treat OOD
labels as WILD and apply our clustering-based surrogate
label assignment logic. By holding back the ground-truth
WILD labels, we simulate real-world conditions while be-
ing able to evaluate the results against known labels.

The primary goal is to understand how to choose k and
T, and whether there are patterns we can extrapolate to real-
life deployment. For this, we first assign surrogate labels
and calculate the ratio of k to the total number of training
samples and evaluate its effect on OOD detection perfor-
mance (Accuracy, FPR95, and AUROC). We plot these met-
rics against the ratio of k/total training samples, increasing k
until the ratio reaches 1. Theoretically, OOD detection im-
proves with more clusters as this enables finer-grained clus-
tering of the activation space, reducing the risk of including
anomalies in ID clusters.

To establish a theoretical maximum (upper-bound per-
formance), we also evaluate OOD classification with known
ID and OOD labels, bypassing the need for clustering.
This oracle performance is represented by horizontal dashed
lines in Figure 8 and Figure 9 (upper plots). The results for
two representative experiments—one from EuroSAT and
one from xBD—since all experiments show similar trends.
We observe that the performance approaches the oracle
boundaries when k is approximately 0.3 times the total num-
ber of training samples. While performance improves as k
increases, a trade-off is required between performance and
walltime as well as computational complexity. Based on
this trade-off, we set k to 0.3 for all experiments, including
the large-scale deployment on FTW. Furthermore, we ob-
serve that our method is not highly sensitive to T. As a re-
sult, we fix T to 0.1 for all experiments, which is the value
used in this initial investigation. We use the Optuna library
to implement a Bayesian-based search algorithm. The com-
posite objective function, which we minimize to determine
the optimal number of clusters and ID fraction threshold, is
detailed in Section 4.

Lastly, the gradual improvement in OOD detection per-
formance with increasing k supports our assumption that
samples with similar distributions lie closer in the activation
space than those with dissimilar distributions. The absence
of degradation in performance further underscores the im-
portance of activation-level clustering as a reliable proxy for
domain estimation based on neighboring samples.

We set k and T as described and use t-SNE in the lower
plots of Figure 8 and Figure 9 to reduce the dimensionality
of the activation spaces to 2D for visualization. When ID
and OOD labels are known, the t-SNE plots show that only
a small fraction of labels changes from the original labels.
This demonstrates the effectiveness of the surrogate label
assignment process described above.

11. Further Experimental Results
In Figure 10, we show the predictions of the DL model f
and the OOD classifier g, along with the ground truth class
and distribution annotations for the EuroSAT experiment,
where Forest serves as the OOD class. The model f trains
on 9 classes (excluding Forest) and tests on Forest. The first
row shows correct predictions by f , while the second row
shows incorrect predictions. Even when f makes misclas-
sifications, g accurately quantifies the distribution shifts in
most cases. The performance of f on the test set is not di-
rectly measurable since the test uses a single unseen class.
We report the performance of g as: Accuracy: 93.25%,
ROC AUC: 98.86%, FPR95: 6.19%.

For xBD, we present results where f is trained on Hurri-
cane Matthew (ID, Figure 11) and tested on Mexico Earth-
quake (OOD, Figure 12). Comparing the input images and
masks between ID and OOD reveals that even when f per-
forms suboptimally, g effectively quantifies the distribution
shifts. The performance of f on the test set is as follows:
Multi-class accuracy: 76.90%, Multi-class Jaccard index:
62.48%. We attribute f ’s suboptimal prediction perfor-
mance to the significant distribution shift between the train-
ing (Hurricane Matthew) and testing (Mexico Earthquake)
datasets, and also to the fact that we reformulate the main
task of damage classification to building detection (as de-
scribed in Section 9.2). The performance of g is: Accuracy:
98.06%, ROC AUC: 99.86%, FPR95: 0.00%.



Experiment 2/217 8/217 16/217 38/217 43/217 48/217 118/217 139/217 199/217 211/217

Forest 0.0625 0.01 0.00 0.00 0.00 0.00 0.0078 0.0156 0.0391 0.0391
HerbVeg 0.2857 0.22 0.3095 0.22 0.2778 0.1429 0.07 0.1032 0.2460 0.2778
Highway 0.8319 0.5462 0.6218 0.3529 0.3613 0.21 0.12 0.0840 0.1765 0.2437
Industrial 0.2406 0.01 0.0376 0.0226 0.0226 0.00 0.0150 0.0226 0.0376 0.0075
Pasture 0.1288 0.0909 0.12 0.1364 0.0985 0.03 0.0833 0.0227 0.1212 0.2273

PermCrop 0.3554 0.2975 0.3140 0.2397 0.2314 0.14 0.12 0.1322 0.2066 0.1653
Residential 0.2960 0.00 0.0160 0.0240 0.00 0.00 0.00 0.0160 0.0400 0.0480

River 0.4688 0.07 0.2031 0.03 0.0938 0.0234 0.0078 0.0078 0.0625 0.0859
SeaLake 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

AnnualCrop 0.2879 0.00 0.0303 0.0606 0.0530 0.02 0.0379 0.0152 0.0682 0.0758
SpatialSplit 0.3182 0.20 0.4773 0.15 0.1970 0.0909 0.2197 0.2273 0.6364 0.7652

Avg ±
Stdev

0.2978
±

0.2223

0.1313
±

0.1729

0.1936
±

0.2133

0.1124
±

0.1176

0.1214
±

0.1264

0.0597
±

0.0741

0.0620
±

0.0696

0.0588
±

0.0712

0.1486
±

0.1801

0.1760
±

0.2185

Table 4. FPR95 scores for OOD detection for experiments on EuroSAT dataset across the first convolutional layer, eight randomly selected
layers, and the last convolutional layer. Notation in the header (e.g., X/Y) refers to the ’layer number / total number of layers.’ The last
row, labeled ’Avg ± Stdev,’ provides the mean ± standard deviation of the scores for each layer across all experiments.

Experiment 3/223 60/223 112/223 146/223 148/223 162/223 176/223 187/223 208/223 216/223

Nepal Flooding
- Midwest Flooding

1.0000 0.09 0.6986 0.7534 0.6986 0.7397 0.46 0.8767 0.8356 0.8493

Santa Rosa Wildfire
- Woolsey Fire

0.5000 0.36 0.36 0.7222 0.6389 0.6389 0.6944 0.6111 0.58 0.9167

Hurricane Matthew
- Nepal Flooding

0.3023 0.06 0.3488 0.4419 0.4884 0.32 0.1163 0.3488 0.2791 0.4419

Hurricane Matthew
- Mexico Earthquake

0.11 0.1471 0.2353 0.6471 0.4118 0.50 0.3235 0.4706 0.6471 0.9706

Portugal Wildfire
(Pre-Post)

0.38 0.9583 0.3889 0.8472 0.8750 0.9167 0.9722 0.77 0.9861 0.8472

Mean ± Stdev
0.4585

±
0.3343

0.3231
±

0.3740

0.4063
±

0.1735

0.6824
±

0.1524

0.6225
±

0.1818

0.6231
±

0.2275

0.5133
±

0.3316

0.6154
±

0.2146

0.6656
±

0.2686

0.8051
±

0.2095

Table 5. FPR95 scores for OOD detection experiments on the xBD dataset across the first convolutional layer, eight randomly selected
layers, and the last convolutional layer. Notation in the header (e.g., X/Y) refers to the ’layer number / total number of layers.’ The last
row, labeled ’Avg ± Stdev,’ provides the mean and standard deviation of the scores for each layer across all experiments.



Experiment Avg Pool Mean Std Max Pool PCA

Forest 0.0859 0.4297 0.0234 0.8750
HerbaceousVegetation 0.2937 0.8651 0.2698 0.9921
Highway 0.7899 0.7311 0.7059 0.9412
Industrial 0.1880 0.2857 0.0526 0.9925
Pasture 0.0909 0.6970 0.2576 0.9924
PermanentCrop 0.3058 0.9008 0.4215 0.9669
Residential 0.2640 0.6640 0.2160 0.8480
River 0.4922 0.6172 0.1563 0.9922
SeaLake 0.0000 0.0313 0.0000 0.9766
AnnualCrop 0.2500 0.7576 0.0455 0.9924
SpatialSplit 0.3182 0.5379 0.3030 0.9848
Nepal Flooding -
Midwest Flooding

0.0000 0.6575 0.9452 0.9726

Hurricane Matthew -
Nepal Flooding

0.0233 0.9070 0.5581 0.9535

Hurricane Matthew -
Mexico Earthquake

0.0588 0.9118 0.5882 1.0000

Portugal Wildfire Pre -
Portugal Wildfire Post

0.9028 0.9861 0.8472 1.0000

Table 6. FPR95 scores for OOD detection across different downsampling methods. The table compares performances of average pooling,
mean and standard deviation pooling, max pooling, and PCA for various experiments. Bold values indicate the best performance for each
experiment, while italicized values represent the second-best performance.

Classifier Accuracy↑ ROC AUC↑ FPR95↓ Prediction Time (ms/sample)

KNeighbors 92.23 ± 0.81 86.85 ± 1.07 38.79 ± 2.02 73.00 ± 8.00
GaussianNB 84.28 ± 1.04 89.37 ± 0.91 32.89 ± 1.89 4.00 ± 1.00
DecisionTree 91.21 ± 0.93 77.43 ± 1.20 78.81 ± 2.41 2.00 ± 1.00
ExtraTrees 93.30 ± 0.67 91.29 ± 0.83 28.53 ± 1.94 12.00 ± 3.00
LogisticRegression 87.67 ± 1.00 93.33 ± 0.87 27.20 ± 1.98 3.00 ± 1.00
SVC 91.54 ± 0.90 94.26 ± 0.72 19.87 ± 1.85 67.00 ± 12.00
RandomForestUnbalanced 92.54 ± 0.82 91.24 ± 0.80 30.98 ± 1.95 9.00 ± 2.00
RandomForest 92.76 ± 0.75 91.11 ± 0.84 30.24 ± 1.91 8.00 ± 2.00
AdaBoost 92.85 ± 0.79 92.03 ± 0.82 29.84 ± 1.89 11.00 ± 3.00
GradientBoosting 92.92 ± 0.81 93.11 ± 0.85 30.47 ± 1.88 7.00 ± 2.00

Table 7. Benchmark results of classifiers g, including Accuracy, ROC AUC, FPR95, and prediction time. Values are reported as mean ±
SEM over all experiments on EuroSAT and xBD. Bold indicates the best performance, and italics indicate the second-best performance.
Prediction time is reported in milliseconds (ms/sample).



Figure 8. EuroSAT Pasture experiment on surrogate label assignment. The upper plot shows the performance metrics (Accuracy, FPR95,
AUROC) for the oracle classifier goracle and the surrogate classifier g∗ as the ratio of clusters to training samples k/len(Xtrain) increases.
As k grows, g∗ gradually improves and approaches the performance of goracle. The lower plot visualizes the feature space before and after
clustering, showing how original ID and OOD labels are reassigned to surrogate ID and OOD labels based on the clustering logic.



Figure 9. xBD Nepal Flooding-Midwest Flooding disaster experiment on surrogate label assignment. The upper plot shows the perfor-
mance metrics (Accuracy, FPR95, AUROC) for the oracle classifier goracle and the surrogate classifier g∗ as the ratio of clusters to training
samples k/len(Xtrain) increases. As k grows, g∗ gradually improves and approaches the performance of goracle. The lower plot visualizes
the feature space before and after clustering, showing how original ID and OOD labels are reassigned to surrogate ID and OOD labels
based on the clustering logic.



Figure 10. EuroSAT experiment with Forest as the OOD class. The figure shows predictions of the DL model f and the OOD classifier g,
along with the ground truth class and distribution annotations. The first row represents samples where f makes correct class predictions,
while the second row represents samples where f makes incorrect predictions. For each sample, we report both the ground truth distribution
and the predicted distribution from g.



Figure 11. xBD experiment with Hurricane Matthew as the ID samples. The figure shows the annotations and predictions of the DL model
f and the OOD classifier g. For each sample, we present f ’s predicted class and g’s predicted distribution, along with the ground truth
annotations.



Figure 12. xBD experiment with Mexico Earthquake as the OOD samples. The figure shows the annotations and predictions of the DL
model f and the OOD classifier g. For each sample, we present f ’s predicted class and g’s predicted distribution, along with the ground
truth annotations.
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