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A-1. SSL4Eco Dataset Construction

In this section, we provide more details on our dataset con-
struction protocol.

Spatial Sampling. We use the same approach as Major-
TOM [29] for sampling locations uniformly across the land-
mass. Our locations correspond to the center of the grid
cells.

Seasonal Sampling. As explained in Section 3.1 and Fig-
ure 2, we define 4 seasons as intervals between Greenup,
Maturity, Senescence, Dormancy, and next Greenup vari-
ables. The definition of these EVI variables can be found in
Section A-3. For each variable, we calculate the median day
in the available years. The EVI product from the MCD12Q2
v6.1 [30] product has missing values in non-vegetated and
some evergreen areas (e.g. tropics), for which we expect
low seasonal variation. We populate these with a nearest-
neighbor approach by searching across geographical space.

For each location and season, we preselect all Sentinel-2
tiles across the 6 years of data available 2017-2024. The
broad range of years was chosen to account for high cloud
coverage in some areas (e.g. tropics in wet seasons). Fol-
lowing previous work [89], we remove the tiles with less
than less than 20% cloud coverage. Finally, we choose the
date and tile with the lowest cloud coverage for the location-
season at hand. If fewer than four seasonal images are avail-
able for a location due to cloud filtering, we use the 2 or 3
images that are available with less than 20% cloud coverage.
Locations with only one image are excluded, accounting for
3% of initially sampled locations, mostly in the tropics and
Antarctica. Hence, final patches may be clouded, but the
construction process ensures that the overall dataset has less
than 20% cloud coverage.

We stress that the scope of this work is to study
impact of spatiotemporal sampling compared to existing
widely-used 4-date seasonal datasets such as SeCo [58] and
SSL4EO [89]. As such, we follow the standard prepro-
cessing procedure of these datasets regarding cloud filter-
ing and the number of seasonal dates per year fair compari-
son across the computer vision literature. However, realistic
Earth Observation applications would require methods ca-
pable of handling arbitrarily sampled, potentially clouded,
time series of satellite observations. We leave this explo-
ration of the required dataset and models for further work.

Data Source. Several open-access satellite products sup-
port vegetation monitoring.
• Landsat missions [91] offer a long-term multispectral

record at 30 m resolution, with a 16-day revisit cycle (re-
duced to 8 days since 2013).

• MODIS [45, 76] provides more spectral bands and a 1–2
day revisit rate, though at a coarser 250–1000 m resolu-
tion.

• Since 2015, Sentinel-2 [70] has been delivering 10 m
global imagery with a 5-day maximum revisit period,
balancing high spatial and temporal resolution. The
Sentinel-2 instrument captures spectral bands indicative
of ecological patterns, such as red-edge wavelengths sen-
sitive to vegetation stress and chlorophyll content [18].

• Radar sensors may provide diverse ecological insights de-
pending on their frequency: C-band such as Sentinel-
1 [83] detects foliage, topography, and moisture, while L-
band such as ALOS PALSAR [75] can characterize wood
structure.
In this paper, we chose Sentinel-2 due to its widespread

use for large-scale vegetation monitoring [46, 52, 80], but
we believe our conclusions remain applicable and may
be extended to other satellite products in future works.
We leave the exploration of our proposed spatiotemporal
sampling for multimodal representation learning for future
work.

Downloading. The SSL4Eco dataset is downloaded from
Google Earth Engine using code from SeCo [58] and
SSL4EO-S12 [89] with altered data source, seasonality,
and data distribution. We use the Sentinel-2A MSI col-
lection which, compared to Sentinel-2C, has atmospheric
correction and depicts more accurately features on the
ground [70]. We use harmonized version of the product in-
stead of the original one, as it corrects for normalization
issues in 2022. We use Sentinel tiles with less than 20%
cloud coverage.

A-2. Implementation Details
In this section, we provide more details on the implementa-
tion and training of our models.

Input Bands. Our models SeCo-Eco and MoCo-Eco are
trained to take as input the 8 Sentinel-2 bands for ecologi-
cal applications. Specifically, we use the B2, B3, B4, B5,
B6, B7, B8, and B8A bands. While B2-B4 provide infor-
mation on foliage color, which helps to assess seasonality



and plant health, B5-B7 capture red-edge wavelengths sen-
sitive to vegetation stress and chlorophyll content, and B8
and B8A in near-infrared range are useful to distinguish
non-vegetated areas. In addition, we also include the NDVI
index as a remote sensing-based proxy of vegetation pro-
ductivity and biomass [69]. As a result, our models expect
9 channels as input.

We leave the exploration of pretraining on our SSL4Eco
sampling with more bands or modalities for future work.

Weighted Sampling. Despite the uniform global sam-
pling of SSL4Eco, some locations may have more inter-
esting geographical and seasonal dynamics than others. In
order to drive the pretraining towards regions with richer
ecological patterns, we use a weighted sampling in our pre-
training dataloader. Specifically, we assign a ÷4 weight to
non-vegetated areas, identified as mean NDVI < 0.1 in all
seasons (17% of SSL4Eco), focusing less on deserts and ice
packs. We oversample mountain regions with a ×2 weight,
identified with the GMBA Mountain Inventory [57] (16%
of SSL4Eco), focusing more on ecologically diverse areas,
as mountain regions harbor the highest diversity and hetero-
geneity of ecoregions.

Pretraining. We pretrain SeCo-Eco using the hyperpa-
rameters and code provided by Mañas et al. [58], using
MoCo v2 [11], with minor changes: we replace the RGB
input with multispectral images and set the length of the
negative examples queue to 65 536, following the imple-
mentation of Wang et al. [89].

We pretrain MoCo-Eco using the hyperparameters and
code provided by Wang et al. [89], adapted for a single
A100 GPU with batch size of 256.

Finally, we modify the random seasonal sampling found
in the implementations of SeCo [58] and SSL4EO [89].
When randomly selecting seasons at batch construction
time, both use:
np.random.choice(..., replace=True) ,
although we believe:
np.random.choice(..., replace=False)
is the correct implementation of their respective methods,
as this avoids contrasting an image against itself.

A-3. EVI-based Seasonality
We use the Enhanced Vegetation Index (EVI) from the
MCD12Q2 v6.1 [30] product of the MODIS [45] satellite
mission to define our local, phenology-informed seasons.
Similar to NDVI, the EVI index is commonly used to quan-
tify the greenness of an area, but is more sensitive in areas
with dense vegetation cover. Figure A-1 illustrate a typi-
cal EVI curve over the year, and Table A-1 details how the
Greenup, Maturity, Senescence, and Dormancy seasonality

Figure A-1. Enhanced Vegetation Index (EVI) curve of the vege-
tation cycle at a given location. Based on this curve, the Greenup,
Maturity, Senescence, and Dormancy seasonality variables are de-
fined as detailed in Tab. A-1. Image taken from [44].

Name Definition - Date when...

Greenup EVI first crossed 15% of segment EVI amplitude
Maturity EVI first crossed 90% of segment EVI amplitude
Senescence EVI last crossed 90% of segment EVI amplitude
Dormancy EVI last crossed 15% of segment EVI amplitude

Table A-1. Definition of the Greenup, Maturity, Senescence, and
Dormancy seasonality variables based on the EVI curve (Fig. A-
1).

variables are defined. For each location in our dataset, we
choose 4 images, one for each season, close to the middle
between the four EVI-derived variables. See the MCD12Q2
user guide [44] for more details on EVI variables.

A-4. Calendar Ablation
Our temporal sampling of SSL4Eco described in Sec-
tion 3.1 makes the assumption that pretraining on EVI-
based seasonal samplings rather than calendar seasons
yields better features for ecological downstream tasks.
To verify this claim, we assemble the SSL4Eco-Calendar
dataset, which follows the same spatial sampling as
SSL4Eco, but with a temporal sampling based on calen-
dar dates following SSL4EO-S12 [89]. We derive SeCo-
Calendar from this dataset, by using the same pretraining
recipe and backbone as for our SeCo-Eco, and compare
in Table A-2 their respective performance across down-
stream tasks. We observe that our proposed EVI-based
seasonal sampling yields representations which overall per-
form better than calendar-based sampling on most down-
stream tasks. In particular, EU-Forest (+1.5 micro F1),
TSAI (+1.9 macro F1), and Biomes (+0.9 macro F1) prove



Model BE10%
(micro mAP)

↑ CLEF
(micro F1)

↑ EU-Forest
(micro F1)

↑ TSAI
(micro F1)

↑ Biomes
(macro F1)

↑ CAVM
(macro F1)

↑ BioMassters
(mean R2)

↑ Chelsa
(mean R2)

↑

SeCo-Calendar 85.3 ± 0.0 22.4 34.2± 0.1 40.8± 0.0 55.2± 1.0 58.7± 0.8 75.7 ± 0.0 80.6± 0.5

SeCo-Eco (ours) 85.3 ± 0.0 22.7 35.7 ± 0.4 42.7 ± 0.0 56.1 ± 0.7 59.4 ± 1.0 75.1± 0.0 81.1 ± 0.4

Table A-2. Linear probing comparison of SeCo-Eco and SeCo-Calendar pretrained on EVI-based and calendar-based seasonal sam-
plings, respectively. EVI-based samplings overally yields better features for downstream macroecological tasks, with the exception of the
BioMassters dataset. Best.

(a) Biomes (b) CAVM

(c) EU-Forest (d) CHELSA

Figure A-2. Spatial distribution of the four new downstream tasks created for this work. We sample Biomes and CHELSA locations
uniformly across the landmass. Meanwhile, the CAVM dataset is located in arctic regions and EU-Forest is limited to Europe.

to benefit from the finer phenology-informed features of
SeCo-Eco. These results validate the importance of tempo-
ral sampling and the definition of local seasonality to cap-
ture local ecological patterns.

A-5. Downstream Tasks

We illustrate in Figure A-2 the spatial distribution of the
samplings used for the new downstream tasks proposed in
this paper: Biomes, CAVM, EU-Forest, and CHELSA

A-6. Detailed Results
Beyond evaluating performance with the most established
metric per dataset, we provide further experimental results
on an expanded set of metrics.



Model

BE10% [82]

Macro F1 ↑ Micro F1 ↑ Macro mAP ↑ Micro mAP ↑

LP 30-NN LP 30-NN LP 30-NN LP 30-NN

SeCo [58] 56.3± 0.3 36.0± 0.1 68.9± 0.2 44.7± 0.1 64.5± 0.2 62.4± 0.2 79.2± 0.0 77.8± 0.1

SatMAE [16] 58.9± 0.7 39.0± 0.1 69.3± 0.3 47.5± 0.1 66.2± 0.3 65.1± 0.2 79.7± 0.2 79.6± 0.0

Satlas [5] 55.7± 1.2 37.3± 0.1 67.3± 0.7 45.9± 0.1 64.8± 0.2 62.2± 0.2 77.9± 0.2 77.9± 0.0

Croma [31] 59.9± 0.5 37.2± 0.1 70.7± 0.2 46.1± 0.1 67.1± 0.1 63.6± 0.3 80.7± 0.2 79.1± 0.0

SSL4EO [89] 63.1± 0.2 39.6± 0.1 72.5± 0.2 47.9± 0.1 71.1± 0.3 67.8± 0.2 83.2± 0.1 81.1± 0.0

DOFA [93] 59.9± 0.6 37.8± 0.2 70.1± 0.2 46.1± 0.1 66.9± 0.2 62.7± 0.2 80.1± 0.0 77.3± 0.1

SeCo-Eco (ours) 66.8 ± 0.3 41.4 ± 0.1 75.0 ± 0.1 49.9 ± 0.1 74.1 ± 0.2 71.7 ± 0.2 85.3 ± 0.0 84.0 ± 0.0

Table A-3. Linear probing and K-Nearest Neighbor performance across multiple metrics for the BigEarthNet-10% task. Best, second best.

Model

EU-Forest [60]

Macro AUROC ↑ Macro F1 ↑ Micro AUROC ↑ Micro F1 ↑

LP 5-NN LP 5-NN LP 5-NN LP 5-NN

SeCo [58] 82.6± 0.0 63.9± 0.3 12.3± 0.7 18.2± 0.3 90.6± 0.1 77.6± 0.2 31.3± 0.9 30.6± 0.2

SatMAE [16] 84.6± 0.2 66.7 ± 0.4 15.0 ± 0.7 21.0 ± 0.3 91.6± 0.1 79.8 ± 0.2 35.7 ± 0.9 33.3 ± 0.1

Satlas [5] 81.1± 0.3 62.7± 0.3 10.1± 0.4 17.5± 0.3 89.6± 0.1 76.7± 0.2 29.8± 1.5 30.0± 0.2

Croma [31] 82.9± 0.3 63.6± 0.3 12.2± 0.7 18.1± 0.3 90.5± 0.2 77.8± 0.2 32.3± 0.9 30.9± 0.2

SSL4EO [89] 83.9± 0.0 65.0± 0.3 11.6± 0.4 19.3± 0.3 91.2± 0.2 78.5± 0.2 32.6± 0.1 31.5± 0.2

DOFA [93] 83.1± 0.1 63.1± 0.5 13.5± 0.5 17.6± 0.5 90.7± 0.1 77.3± 0.3 34.8± 0.9 29.9± 0.3

SeCo-Eco (ours) 84.8 ± 0.2 65.6± 0.2 14.8± 0.6 19.9± 0.2 91.7 ± 0.1 79.0± 0.1 35.7 ± 0.4 32.4± 0.2

Table A-4. Linear probing and K-Nearest Neighbor performance across multiple metrics for the EUForest task. Best, second best.

Model

TreeSatAI [1]

Macro F1 ↑ Macro MAP ↑ Micro F1 ↑ Micro MAP ↑

LP 5-NN LP 5-NN LP 5-NN LP 5-NN

SeCo [58] 10.1± 0.0 24.3 24.3± 0.0 20.5 23.4± 0.0 35.2 44.6± 0.0 34.6

SatMAE [16] 21.0 ± 0.1 33.7 36.8 ± 0.1 35.8 46.8 ± 0.3 43.7 58.0 ± 0.1 52.3

Satlas [5] 17.8± 0.0 30.1 32.4± 0.0 27.9 42.9± 0.0 40.8 54.2± 0.0 45.4

Croma [31] 20.3± 0.0 30.1 34.9± 0.0 27.8 43.8± 0.0 40.7 56.6± 0.0 45.6

SSL4EO [89] 18.2± 0.0 30.2 33.1± 0.0 28.4 42.3± 0.0 40.9 54.5± 0.0 46.0

DOFA [93] 14.7± 0.0 26.2 28.7± 0.0 21.9 35.1± 0.0 37.3 50.8± 0.0 37.5

SeCo-Eco (ours) 19.2± 0.0 29.7 34.3± 0.0 29.0 42.7± 0.0 40.6 54.8± 0.0 45.7

Table A-5. Linear probing and K-Nearest Neighbor performance across multiple metrics for the TreeSatAI task. Due to the fixed splits, no
standard deviation can be reported for K-Nearest Neighbor probing. Best, second best.



Model

Biomes [65]

Macro Acc ↑ Macro AUROC ↑ Macro F1 ↑ Micro Acc ↑ Micro F1 ↑

LP 10-NN LP 10-NN LP 10-NN LP 10-NN LP 10-NN

SeCo [58] 40.0± 0.4 35.4± 0.7 91.2± 0.6 79.8± 1.0 41.6± 0.5 36.9± 1.0 62.7± 0.5 59.2± 0.5 62.7± 0.5 59.2± 0.5

SatMAE [16] 49.9± 1.0 46.1± 0.5 93.7± 0.4 88.8± 0.4 51.4± 1.1 47.8± 0.7 69.0± 0.5 66.7± 0.6 69.0± 0.5 66.7± 0.6

Satlas [5] 47.1± 1.4 45.9± 0.7 92.8± 0.5 88.4± 0.4 48.3± 1.6 47.6± 0.9 65.6± 0.8 65.1± 0.5 65.6± 0.8 65.1± 0.5

Croma [31] 46.2± 1.8 41.2± 0.5 92.2± 0.4 85.7± 0.6 47.2± 1.4 42.2± 0.6 65.7± 0.7 61.7± 0.3 65.7± 0.7 61.7± 0.3

SSL4EO [89] 51.3± 0.9 48.2± 0.5 94.3± 0.6 89.6± 0.8 53.4± 1.0 49.7± 0.5 70.4± 0.5 67.6± 0.6 70.4± 0.5 67.6± 0.6

DOFA [93] 48.1± 1.4 41.8± 0.4 92.9± 0.3 85.7± 0.6 49.7± 1.3 43.0± 0.5 66.4± 0.6 61.8± 0.5 66.4± 0.6 61.8± 0.5

SeCo-Eco (ours) 53.9 ± 0.7 49.3 ± 0.7 95.5 ± 0.4 90.0 ± 0.7 56.1 ± 0.7 51.2 ± 0.9 72.9 ± 0.5 69.4 ± 0.4 72.9 ± 0.5 69.4 ± 0.4

Table A-6. Linear probing and K-Nearest Neighbor performance across multiple metrics for the biomes classification task. Best,
second best.

Model

CAVM [73]

Macro Acc ↑ Macro AUROC ↑ Macro F1 ↑ Micro Acc ↑ Micro F1 ↑

LP 20-NN LP 20-NN LP 20-NN LP 20-NN LP 20-NN

SeCo [58] 53.2± 0.6 50.3± 0.6 87.3± 0.3 85.6± 0.3 54.5± 0.7 52.1± 0.7 61.4± 0.6 60.6± 0.5 61.4± 0.6 60.6± 0.5

SatMAE [16] 55.2± 1.6 54.0± 0.6 88.3± 0.3 87.9± 0.3 56.4± 1.5 55.8± 0.7 63.0± 0.5 63.5± 0.5 63.0± 0.5 63.5± 0.5

Satlas [5] 52.7± 2.1 51.5± 0.4 87.6± 0.3 86.6± 0.3 53.8± 2.0 53.2± 0.5 61.2± 0.5 61.2± 0.5 61.2± 0.5 61.2± 0.5

Croma [31] 52.7± 1.3 50.1± 0.7 87.4± 0.3 85.6± 0.4 53.7± 1.2 51.6± 0.8 61.0± 0.7 60.3± 0.6 61.0± 0.7 60.3± 0.6

SSL4EO [89] 56.0± 0.5 55.0± 0.6 88.9± 0.3 88.2± 0.3 57.5± 0.6 56.9± 0.7 63.7± 0.6 63.7± 0.5 63.7± 0.6 63.7± 0.5

DOFA [93] 55.3± 1.8 51.7± 0.5 88.2± 0.4 87.0± 0.3 56.5± 1.6 53.6± 0.6 62.4± 0.8 62.2± 0.4 62.4± 0.8 62.2± 0.4

SeCo-Eco (ours) 58.1 ± 1.2 58.0 ± 0.7 89.9 ± 0.3 89.2 ± 0.4 59.4 ± 1.0 59.5 ± 0.8 65.3 ± 0.5 65.6 ± 0.6 65.3 ± 0.5 65.6 ± 0.6

Table A-7. Linear probing and K-Nearest Neighbor performance across multiple metrics for the CAVM classification task. Best,
second best.

Model
BioMassters [61]

Mean R2 ↑ Mean MAE ↓ Mean RMSE ↓

LP 1-NN LP 1-NN LP 1-NN

SeCo [58] 51.3± 0.0 −19.2 3.9± 0.0 7.0 5.8± 0.0 11.0

SatMAE [16] 59.5± 0.6 −18.0 3.6± 0.0 7.0 5.3± 0.0 11.0

Satlas [5] 62.5± 0.9 −17.8 3.3± 0.1 7.0 4.9± 0.1 11.0

Croma [31] 58.5± 0.2 −18.1 3.5± 0.0 7.0 5.3± 0.0 11.0

SSL4EO [89] 71.4± 0.0 −16.8 2.8± 0.0 6.9 4.2± 0.0 10.9

DOFA [93] 63.1± 0.4 −18.3 3.2± 0.0 7.0 4.8± 0.0 11.0

SeCo-Eco (ours) 75.2 ± 0.1 -16.3 2.5 ± 0.0 6.9 3.8 ± 0.0 10.9

Table A-8. Linear probing and K-Nearest Neighbor performance across multiple metrics for the BioMassters task. Due to the fixed splits,
no standard deviation can be reported for K-Nearest Neighbor probing. Best, second best.



Model

CHELSA Climate [47] - Temperature & Precipitation

Temp MAE ↓ Temp R2 ↑ Prec MAE ↓ Prec R2 ↑

LP 10-NN LP 10-NN LP 10-NN LP 10-NN

SeCo [58] 572.3± 1.1 547.8± 1.7 63.1± 0.3 61.3± 0.3 33380.8± 291.5 30725.5± 171.8 60.3± 0.7 60.7± 0.8

SatMAE [16] 482.0± 2.3 411.4± 1.2 74.4± 0.2 76.1± 0.2 30999.5± 314.9 27087.1± 135.4 65.2± 0.4 67.1± 0.5

Satlas [5] 595.1± 3.4 474.7± 3.6 62.1± 0.4 69.4± 0.7 36698.8± 685.3 29535.8± 95.1 55.9± 1.0 62.4± 0.7

Croma [31] 511.5± 2.5 505.5± 1.6 71.1± 0.2 66.4± 0.2 32887.8± 350.8 30974.2± 96.6 61.4± 0.6 60.3± 0.4

SSL4EO [89] 496.1± 1.1 410.7± 0.8 72.4± 0.2 75.8± 0.3 30960.7± 154.7 27989.7± 148.3 65.5± 0.4 65.4± 0.4

DOFA [93] 576.0± 0.7 505.9± 0.9 63.9± 0.3 66.9± 0.3 34860.1± 297.0 30311.1± 182.9 59.7± 0.5 59.9± 0.7

SeCo-Eco (ours) 411.4 ± 0.9 364.8 ± 0.7 80.7 ± 0.2 80.5 ± 0.2 27695.5 ± 74.8 25946.7 ± 72.6 70.2 ± 0.3 69.5 ± 0.4

Table A-9. Linear probing and K-Nearest Neighbor performance overview for the CHELSA Climate task. We break down the predictions
for temperature and precipitation. Best, second best.

Model

CHELSA Climate [47] - Evapotranspiration & Site Water Balance

Evap MAE ↓ Evap R2 ↑ Swb MAE ↓ Swb R2 ↑

LP 10-NN LP 10-NN LP 10-NN LP 10-NN

SeCo [58] 2131.6± 8.7 2068.0± 9.8 68.9± 0.2 67.1± 0.1 24903.7± 137.7 23878.3± 143.0 80.9± 0.2 80.5± 0.2

SatMAE [16] 1760.4± 6.7 1564.7± 5.4 79.2± 0.2 80.0± 0.2 20999.2± 87.5 19055.6± 66.2 86.9± 0.1 87.7± 0.1

Satlas [5] 2093.3± 6.4 1761.5± 10.3 70.9± 0.2 75.3± 0.5 24115.2± 131.3 20772.5± 116.8 83.4± 0.2 85.5± 0.1

Croma [31] 1872.4± 27.2 1882.2± 5.6 76.2± 0.5 73.2± 0.2 23003.2± 270.2 21593.9± 79.0 84.6± 0.4 84.7± 0.2

SSL4EO [89] 1786.0± 3.4 1522.8± 3.0 78.6± 0.2 81.1± 0.2 20444.3± 58.1 18155.6± 42.4 87.7± 0.1 88.9± 0.1

DOFA [93] 2086.1± 3.5 1911.6± 6.2 71.2± 0.3 72.0± 0.3 23943.5± 38.3 22370.0± 60.8 83.4± 0.1 83.5± 0.2

SeCo-Eco (ours) 1537.6 ± 4.2 1391.2 ± 3.3 83.7 ± 0.1 83.9 ± 0.2 18567.4 ± 90.2 17257.4 ± 50.6 89.6 ± 0.1 89.9 ± 0.1

Table A-10. Linear probing and K-Nearest Neighbor performance overview for the CHELSA Climate task. We break down the predictions
for evapotranspiration and site water balance. Best, second best.
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