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8. Additional Information: Data

Imaging Modes The TerraSAR-X satellite, like other SAR

platforms, offers multiple imaging modes, each providing

different spatial resolutions and aerial coverage. In this

work, we utilize four imaging modes: StripMap (SM),

SpotLight (SL), High Resolution SpotLight (HS), combin-

ing both 150 MHz and 300 MHz bandwidths, and Staring

SpotLight (ST). The key differences among these modes

are summarized in Tab. 4. It is important to note that

a SAR image with lower spatial resolution is not equiva-

lent to a downsampled high-resolution image. This distinc-

tion arises primarily because the speckle effect – a granular

noise inherent to coherent imaging systems like SAR, re-

sulting from the constructive and destructive interference of

backscattered signals from multiple scatterers within a res-

olution cell – has a significantly greater impact on images

with larger resolution cells than on fine-resolution Spot-

Light images. Fig. 4 compares the same area captured in

the four different modes at similar incidence angles (note:

different acquisition dates).

Radar Geometry In SAR imaging, two common geome-

tries are used to represent spatial dimensions: slant range

and ground range. The slant range is the direct line-of-

sight distance between the radar antenna and a target on the

Earth’s surface, measured along the radar beam’s path. In a

typical slant range SAR image, each column represents the

slant range distance from the radar to the target, effectively

mapping the across-track (range) dimension. Each row cor-

responds to a different position along the radar platform’s

flight path, representing the along-track (azimuth) dimen-

sion. This means the image grid is organized such that

columns increase with distance from the radar, and rows

progress with the movement of the radar platform. Com-

pare the first to columns in Fig. 5: One can observe that al-

though the scenes were captured from opposite directions,

Table 4. Properties of the different imaging modes of TerraSAR-X

as used in this work

Imaging

Mode

Scene Size

[km]

Slant Range

Resolution [m]

Azimuth

Resolution [m]

Looking

Angle

SM 30 x 50 1.2 3.3 20° – 45°

SL 10 x 10 1.2 1.7 20° – 55°

HS 10 x 5 0.6 – 1.2 1.1 20° – 55°

ST 4 x 3.7 0.6 0.24 20° – 45°

Figure 4. Comparison between the four different imaging modes

being used in this work. The images depict the same scene cap-

tured with similar viewing angles but in different imaging modes.

the top of the Eiffel Tower points to the left side of the im-

age because it is closer to the sensor than the base of the

tower. Further, the north direction on the Earth’s surface

does not correspond to the top in the slant SAR image. Con-

sequently, two SAR images in slant range cannot be accu-

rately coregistered unless they were acquired from the same

orbit with identical acquisition parameters.

On the other hand, in ground range geometry, these slant

range measurements are projected onto a horizontal plane

(or, as in this case, a terrain model), as if viewed from di-



Figure 5. Comparison of the different SAR image geometries. Each row shows a SAR image of the same area taken from different

directions, along with the corresponding height above ground values. Columns 1 and 2 display the images in their native slant-range

geometry, where the columns represent the distance to the sensor from left to right. In Columns 2 and 3, the images are projected onto a

terrain model, making each pixel correspond to one meter on the Earth’s surface. The far-right column shows the height values in a map

projection, independent of the image geometries, and thus identical for both acquisitions.

rectly above. By removing elevation-induced distortions,

ground range images simplify spatial interpretation and, im-

portantly, enable fusion/coregistration with different SAR

images or other types of geospatial data. However, objects

not included in the terrain model used for projection – i.e.

buildings and vegetation – still appear distorted. In the third

and fourth columns of Fig. 5, the two SAR images along-

side their respective image-specific heights in ground range

projection are shown. The Eiffel Towers are now point-

ing in different directions (towards the respective sensor),

but ground pixels appear at the same position in both of

the images, enabling pixel-by-pixel superimposition. We

refer to the heights projected from slant range geometry

onto the DTM as heights in image geometry or still as slant

heights since these height values originate from slant range

and retain the characteristics of the original geometry be-

ing image-specific. The last column in Fig. 5 displays the

corresponding heights in a map projection, which is inde-

pendent of the image geometry and thus identical for both

SAR images shown.

Dataset Limitations and Challenges The dataset utilized

in this study presents several limitations that may introduce

uncertainties into the model’s performance. First, there are

inconsistencies in the acquisition dates of different images

capturing the same geographic scene, meaning that physi-

cal or structural changes could have occurred in the inter-

vening period. For instance, a newly built building visi-

ble in only one of the provided views could confuse the

model. Additionally, discrepancies between the acquisi-

tion dates of images and corresponding ground truth data

– whether LiDAR or building footprint annotations – intro-

duce errors both in training and validation, as both imagery

and ground truth may not accurately reflect the same spatial

conditions. Furthermore, the digital terrain model used for

terrain correction bears inherent inaccuracies, with devia-

tions that can reach several meters, particularly in densely

constructed urban areas. These inaccuracies propagate into

geolocation errors, potentially distorting spatial alignment

between SAR images captured from varying perspectives

and with respect to the ground truth data.

Parameter Preprocessing The acquisition parameters,

which are incorporated into the transformer via the APE

module, undergo preprocessing to enhance their inter-

pretability for the neural network, as described in Eq. (2).

To preserve its cyclic nature and avoid artificial discontinu-

ities, the azimuth angle Az, which spans from 0◦ to 360◦,

is represented using its sine and cosine components. The

looking angle ¹ is transformed using the cotangent function,

as this effectively approximates the ratio between building

height and the corresponding layover extent on a tangential

plane. The imaging mode m is mapped to a single-digit

identifier. While the imaging mode could alternatively be

substituted by the sensor’s resolution – given their direct

correlation – it is included here as an example of how se-

mantic or non-numerical metadata, such as sensor type, in-

put modality, or polarization, can be incorporated into the

model.



9. Additional Information: Metrics

Segmentation Metrics To evaluate the performance of the

binary building footprint segmentation, we used the overall

accuracy (OA)

OA =
TP + TN

TP + TN + FP + FN
(4)

with TP and FP the true and false positives, and TN and

FN the true and false negatives, and the mean Intersection

over Union (mIoU):

mIoU =
1

2

(

TP

TP + FP + FN
+

TN

TN + FP + FN

)

.

(5)

Regression Metrics To assess the performance of the

height reconstruction (both in map and image geometries),

we utilized the Mean Absolute Error (MAE)

MAE =
1

n

n
∑

i=1

|yi − ŷi|, (6)

with n as the number of data points, yi is the actual target

value for pixel i, and ŷi as the predicted value for pixel i,

the Root Mean Squared Error (RMSE)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2, (7)

and the Structural Similarity Index Measure (SSIM) [30]

as some sort of relative metric, which is intended to reflect

people’s perception:

SSIM =
(2µyµŷ + C1)(2Ãyŷ + C2)

(µ2
y + µ2

ŷ + C1)(Ã2
y + Ã2

yŷ + C2)
, (8)

where y and ŷ are the predicted and target images, µy and

µŷ their average pixel intensities, Ã2
y and Ã2

yŷ the corre-

sponding variances, Ãyŷ representing the covariance, and

C1 and C2 as constants to numerically stabilize the divi-

sion.

10. Additional Information: Training

Loss Function Since we are dealing with a long-tailed dis-

tribution, characterized by a substantial number of ground

pixels at a height of zero, the models usually tend to under-

estimate heights. This observation underscores the rationale

for employing an asymmetric loss function:

lasym =
1

n

n
∑

i=1

{

wunderestimated · |ŷi − yi|, if ŷi < yi

woverestimated · |ŷi − yi|, if ŷi g yi
(9)

with ŷ the predictions and y the target, n the number of pix-

els, wunderestimated = 1.5 and woverestimated = 1. To penalize

errors along edges and to further improve small details, the

gradient loss

lgrad =
∑

d∈{x,y}

∥∇d(ŷ)−∇d(y)∥1 (10)

where ∇d is the spatial derivative in the dimension d (de-

termined through Sobel operator), and normal loss is added

(details can be found in [12]):

lnormal =
1

n

n
∑

i=1
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 (11)

with n⃗x
i=[−∇x(xi), −∇y(xi), 1 ]¦, x∈{y,ŷ} and ï·, ·ð the inner

product of vectors. The combined loss function for the re-

gression task is the weighted sum of the losses above:

Lregression = ³ · lasym + ´ · lnorm + µ · lgrad (12)

with ³ = ´ = 1 and µ = 0.1. For the segmentation task,

i.e. the building footprints, the binary cross entropy loss is

used, which can be expressed as (using logits ŷ):

Lsegmentation = lBCE =

−
1

n

n
∑

i=1

(yi log(Ã(ŷi)) + (1− yi) log(1− Ã(ŷi))) (13)

where Ã(x) = 1
1+e−x is the sigmoid function. The total loss

function is formulated as a weighted sum of the individual

task-specific losses:

LMTL = Lheight + Lheight slant + 0.1 · Lbuildings. (14)

Multitask DPT Setup We adopt the dense prediction strat-

egy using ViT-based models as proposed by [19] (DPT).

The projection of features derived from multiple views and

their associated metadata tokens is described in detail in the

main manuscript. For the 12-layer ViT-Base configuration,

features are extracted after layers 3, 6, 9, and 12. For the

ViT-Large configuration, features are extracted after layers

5, 12, 18, and 24. Similarly, for the ViT-Huge configuration,

features are extracted after layers 8, 16, 24, and 32.

To infer annotations for the three tasks in the multitask

framework, we extend the final convolutional block of the

DPT with three task-specific blocks. Each block consists

of five convolutional layers, each followed by a LeakyReLU

activation function.

Masking strategies for MAE pre-training In the con-

text of remote sensing images, traditional masking strate-

gies employed in masked autoencoders must be rethought

to address the fundamental differences from natural object-

centered images. Unlike photographs of objects (such as

dogs for instance), where masking significant portions still



Table 5. Numerical results from fully-supervised experiments (no pre-training) using the ViT-Base backbone in the 2-view scenario.

Performance gains achieved with the APE module are comparable to those reported for the ViT-Large configuration (refer to the main

paper).

Classification

Footprints

Regression

Height

Regression

Height (Slant)

# Views Model mIoU OA MAE RMSE SSIM MAE RMSE SSIM

2
DPT-Base [19] 0.73 0.92 4.86 7.23 0.85 5.06 7.38 0.88

SARFormer (ours) 0.73 0.92 4.44 6.68 0.85 4.69 6.94 0.88

Figure 6. Different masking strategies for multi-view scenarios.

The preserving masking strategy (lower right) ensures that at least

one view remains active for all locations across views #1 and #2.

In contrast, the random masking strategy (upper right) does not

guarantee this consistency. The blind-channel masking strategy

(lower left) is a special case of preserving, where one view is en-

tirely masked while the other remains fully active.

allows recognition due to the structured and object-centric

nature of the image, remote sensing images often lack such

intrinsic coherence. For example, if a single building within

a forested area is masked, it is basically impossible for the

model to reconstruct it due to the absence of sufficient con-

textual information. To address this issue, we introduce

novel masking strategies tailored to remote sensing data.

Our approach leverages multiple views of the same scene

captured under varying acquisition conditions, such as dif-

fering resolutions, angles, and directions. By ensuring that

masking does not occlude the same patch across all views,

the model retains at least one perspective for reference,

thereby enhancing reconstruction potential while keeping

the intrinsic complexity arising from acquisition variabil-

ity. We refer to this strategy as preserving. A notable ex-

treme of this strategy, termed blind-channel masking, in-

volves completely masking one view, challenging the MAE

to reconstruct it solely from the unmasked complementary

view. The blind-channel scenario necessitates encoding the

acquisition parameters (as being done by the APE module)

since these cannot be inferred from the data in the masked

view. These strategies exploit the rich heterogeneity of re-

mote sensing data, fostering more robust and semantically

Table 6. Comparison between different model size configurations

(on a subset of the metrics). The setting was chosen to the best-

performing: two views, active APE module, pre-trained using the

preserving strategy.

Model Size mIoU MAE (map) MAE (slant)

ViT-Base 0.73 4.26 4.39
ViT-Large 0.74 4.12 3.96

ViT-Huge 0.76 4.04 3.96

meaningful representations. Compare Fig. 6 for a visual ex-

ample of the different strategies.

11. Additional Results

Effect of Backbones As discussed in the main paper, we

trained our best-performing configuration (2 views, ac-

tive APE, and preserving masking during pre-training) us-

ing three different backbone architectures: ViT-Base, ViT-

Large, and ViT-Huge. Tab. 6 presents a subset of evalua-

tion metrics on the test set for these configurations, demon-

strating a consistent trend where larger model sizes lead to

improved performance. Furthermore, Tab. 5 illustrates the

effect of incorporating the APE module into the ViT-Base

backbone, evaluated in the 2-view setup. Notably, the in-

clusion of the metatoken demonstrates significant benefits,

particularly for the height estimation task.

Fine-Tuning on limited Labels To further highlight the ef-

fectiveness of the proposed pre-training paradigm, we min-

imized the labeled dataset for fine-tuning to just two SM

images from a single location, Paris. This setup introduces

a significant domain shift in multiple regards during test-

ing, as it includes data from different locations, acquisition

modes, and looking angles. Fig. 7 presents a visual com-

parison of outputs – specifically, height maps and building

footprints – generated by a UNet (trained from scratch),

the non-pre-trained SARFormer, and the pre-trained SAR-

Former. Two HS scenes from Berlin served as model in-

put. Although performance remains below that achieved

with the full dataset, the benefits of pre-training are evident,

underscoring its value, particularly for few-label or out-of-



Figure 7. Next to the ground truth (bottom), we present model out-

puts trained on an extremely limited dataset consisting of only two

SM images of Paris. Inference was conducted on two HS images

of Berlin captured from different viewing angles than those used in

training. Notably, the pre-trained SARFormer (third row) demon-

strates the highest resilience to this multifactorial domain shift,

encompassing location, resolution, and geometric differences. For

comparison, we also display results from UNet and SARFormer

trained from scratch (first and second rows, respectively).

domain scenarios. Tab. 3 shows the error metrics for the

entire test set (the same as all other experiments were eval-

uated on) in the limited-label scenario.

12. Additional Visual Results

Demonstration of best-performing configuration Fig. 9

presents the outputs of all three tasks on three representa-

tive SAR scenes. These results were generated using the

pre-trained SARFormer with the ViT-Huge backbone, ac-

tivated APE module, and the preserving masking strategy

during pre-training. For each example, the top row shows

the model outputs, while the bottom row displays the corre-

sponding ground truth data. The depicted scenes are from

Vancouver and Berlin, both of which were entirely excluded

from the training set. In the first example, two differ-

ent imaging modes were utilized to reconstruct a complex

scene containing multiple high-rise buildings. The results,

in both slant and map geometries, are closely aligned with

the ground truth. The second example illustrates a chal-

lenging case involving SM input data, characterized by low

spatial resolution and high noise levels. While the perfor-

mance is inferior compared to Spotlight images, the model

still achieves acceptable results. An intriguing detail in the

final example is the absence of the Berlin TV Tower in the

model’s prediction, which is distinctly visible as the tallest

structure in the ground truth. This omission is very likely

due to the weak radar response of the tower. Only the

sphere at the top of the structure is faintly discernible in the

SAR images, a feature detectable only by trained observers.

Here, the methodology reaches its physical limitations.

Extension to other missions Although a detailed descrip-

tion of integrating various satellite missions into the SAR-

Former framework is beyond the scope of this manuscript, it

is important to note that such integration is straightforward.

Figure 8 presents an exemplary output from a SARFormer

variant that was pre-trained and fine-tuned on an extended

version of the dataset described here. This extended dataset

includes imagery from ICEYE, Umbra, and Capella Space

in addition to the previously mentioned TerraSAR-X data.

The only modification relative to the manuscript was to re-

place the encoding of a discretized imaging mode m with

the encoding of the azimuth and range resolutions of the

corresponding product since the nomenclature of the imag-

ing modes differs between providers.

Comparison to Baseline Fig. 10 compares the outputs of

four different models with the corresponding ground truth.

The baseline is a UNet in the multi-task configuration, eval-

uated for both single-view and two-view scenarios. In con-

trast, we include results from the pre-trained SARFormer

(ViT-Large), also evaluated for single-view and two-view

cases. The performance comparison across the four illus-

trated scenes highlights several key observations. First, the

addition of a second view significantly enhances the recon-

struction capability of the models, both in terms of height

accuracy and building shapes. Furthermore, SARFormer

demonstrates superior performance compared to the base-

line, in both single-view and two-view scenarios. For the

third scene, no DSM as ground truth was available, so the

comparison is limited to building footprints. In this case,

the SARFormer models again produced results that align

more closely with the labels compared to the baseline mod-

els. Overall, it was observed that the proposed SARFormer

architecture particularly excels in complex scenarios, such

as those involving low-resolution data, small structures, or

heavily mixed layover signals.



Figure 8. Three SAR spotlight acquisitions over the city of Berlin, provided by ICEYE, Capella Space, and Umbra, were used to infer

the SARFormer model. Despite differences in acquisition characteristics, the combined nDSMs (bottom row) result in a homogeneous and

coherent reconstruction. Aerial imagery is taken from Google, ©2025.



Figure 9. Model outputs for three scenes generated by the pre-trained SARFormer (ViT-Huge) using 2 input views. The upper rows present

the model’s predictions for the three downstream tasks, while the lower rows display the corresponding ground truth data.



Figure 10. Comparison of SARFormer and baseline models in both single-view and two-view scenarios. The final column displays the

ground truth data. Note that height labels were unavailable for the third scene.


