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Supplementary Material

A. Appendix
A.1. Training details
In Table 1 we present all networks we trained and evaluated
on the LADI v2 dataset in the initial phase of the model
selection process, sorted by test mAP score.

A.2. v1 and v2 Comparison Class Mappings
In Table 2 we provide the class mappings used to compare
the LADI v1 and v2 dataset performance.

A.3. Label matrices
In the main paper, we combined the label-label and label-
event matrices for the training and validation splits for the
interest of space since they have similar distributions. For
transparency, we reproduce the label-label and label-event
matrices for each individual split in Figure 1

A.4. Additional Performance Characterization
Incident hazard type analysis. The performance between
the test and validation sets is comparable for most hazard
types, except for fire (see Figure 2a). The difference in per-
formance for fire incidents is likely due to the relative lack
of fire data in the training and validation sets compared to
the test set.

Geographic analysis. The classifier performs robustly
across various geographies. Figure 2b shows the mAP of
the classifier for states in the test set, which are those states
in which CAP collected images for disasters in 2023. While
only 10 states are represented in the test set, the classifier
achieved an mAP between 80 and 96 for all of them. The
state of Hawaii, with the lowest mAP at 80, had only one
CAP mission in the test set, the August 2023 Hawaii wild-
fires. Relatively low performance is likely due to the rela-
tive lack of fire events in the training data, as well as poten-
tial differences due to geography. We thus caution prac-
titioners and researchers against using models trained on
LADI v2 for applications not well represented in the train-
ing set and recommend supplemental data collection and
training.

A.5. Semantic Similarity Analysis
CLIP (Contrastive Language-Image Pretraining) [2] is a vi-
sion language model pretrained on 400 million image-text
pairs from the internet. The model is given a batch of im-
ages and captions, and is trained to pair the associated im-
age to its respective caption. In doing so, the model learns
to align the encoded image representation to the respective
encoded caption text representation. As a result, images

with similar textual descriptions tend to be closer together
in the CLIP image embedding space, and dissimilar images
are further apart. We use this property to characterize the
distribution of our validation and test sets below.

We attempt to quantify “out-of-sample-ness” by using
distance in CLIP space [2]. CLIP embeddings align im-
ages with similar textual descriptions, such that images with
semantically similar content will be nearby in CLIP space
even if they are not necessarily visually similar in their pixel
representations. In this way, we can use distance in CLIP
space as a proxy for semantic similarity between two im-
ages, where similar images are closer in CLIP space. We
use the Euclidean distance between normalized vectors as
the distance metric, d(θ) =

√
2(1− cos θ), where θ is

the angle between the two vectors. For each image in the
validation and test sets, we compute the CLIP distance be-
tween it and its nearest neighbor in the training set. We
also compute the L1 norm of the error vectors (the differ-
ence between the post-sigmoid/pre-threshold prediction and
ground-truth vectors) for each image in the validation and
test sets.

We visualize the joint distribution of the L1 error norm
and distance to nearest training point for each image in the
validation (blue) and test (orange) set in Figure 3. Kernel
density estimates of the marginal distributions are visual-
ized along the top and right hand axes. We can see that the
test set is on average further away in CLIP space and has
larger error norms. There appears to be a positive relation-
ship between the distance to the nearest training example
and the average error norm, as well as the variance in the
distribution of the error norm. This approach could be used
characterize how out-of-sample a given set of images is, as
well as estimate the potential expected degradation of per-
formance associated with that distribution shift.

A.6. Vision-Language Model Prompts
A.6.1. LLaVA-NeXT Prompts
We prompted LLaVA-NeXT for each label individually. For
a given image/label, LLaVA-NeXT saw a generic introduc-
tion followed by one of the following bullets:

Respond to the following question as accurately as possi-
ble with a ONE WORD yes/no answer. ONLY RESPOND
WITH ONE WORD, ’YES’ OR ’NO’. Question:

• Does this image contain bridges? Answer with one word,
‘yes’ or ‘no.’

• Does this image contain buildings? Answer with one
word, ‘yes’ or ‘no.’



model test mAP val mAP

bit-50 0.890315 0.895946
swinv2-large-patch4-window12to16-192to256-22kto1k-ft 0.869659 0.881908
swinv2-large-patch4-window12-192-22k 0.859774 0.886702
vit-large-patch16-384 0.856639 0.869559
swin-tiny-patch4-window7-224 0.845096 0.850194
vit-large-patch16-224-in21k 0.834595 0.854939
deit-base-patch16-224 0.833991 0.847348
resnet-50 0.819502 0.825781
vit-base-patch32-384 0.797757 0.815523
vit-base-patch16-224-in21k 0.759668 0.711914
vit-base-patch32-224-in21k 0.738049 0.728242
mobilenet v1 1.0 224 0.730085 0.647575
vit-huge-patch14-224-in21k 0.721056 0.651463
efficientnet-b0 0.712821 0.607476
swin-large-patch4-window7-224-in22k 0.705249 0.561424
mobilenet v2 1.0 224 0.699678 0.614432
resnet-152 0.695796 0.743922
focalnet-base 0.695531 0.566548
convnextv2-large-22k-224 0.691524 0.565504
deit-base-patch16-224 0.640672 0.625217

Table 1. Performance comparison of initial selection of 20 models, sorted by test mAP performance

Original Class Source Dataset Mapped Class(s)

flood v1 flooding, damage
rubble v1 damage, debris
misc damage v1 damage
building v1 building
road v1 road
bridges any v2
buildings any v2 building
buildings affected or greater v2 building, damage
buildings minor or greater v2 building, damage
debris any v2 damage, debris
flooding any v2 flooding, damage
flooding structures v2 building, flooding, damage
roads any v2 road
roads damage v2 road, damage
trees any v2
trees damage v2 damage
water any v2

Table 2. The class mappings established between the LADI v1 and v2 labels and the condensed label set for Section ??

• FEMA defines four levels of damage: affected, minor,
major, and destroyed. A building is affected if damage is
mostly cosmetic. A building has sustained minor damage
if the damage is repairable and non-structural. A building
has sustained major damage if the damage is structural or
if it is significant damage that requires extensive repairs.
A building is destroyed if it cannot be repaired. Does

this image contain any buildings which have sustained an
”affected” level of damage or greater? Answer with one
word, ‘yes’ or ‘no.’

• FEMA defines four levels of damage: affected, minor,
major, and destroyed. A building is affected if damage is
mostly cosmetic. A building has sustained minor damage
if the damage is repairable and non-structural. A building



(a) Label-label matrix for train, validation, and test splits

(b) Label-event matrix for train, validation, and test splits

Figure 1

has sustained major damage if the damage is structural or
if it is significant damage that requires extensive repairs.
A building is destroyed if it cannot be repaired. Does
this image contain any buildings which have sustained an
”minor” level of damage or greater? Answer with one
word, ‘yes’ or ‘no.’

• Does this image contain debris? Answer with one word,
‘yes’ or ‘no.’

• Does this image contain flooding of any structures or
land? Answer with one word, ‘yes’ or ‘no.’

• Does this image contain flooded structures? Answer with
one word, ‘yes’ or ‘no.’

• Does this image contain roads? Answer with one word,
‘yes’ or ‘no.’

• Does this image contain damaged roads? Answer with

one word, ‘yes’ or ‘no.’
• Does this image contain trees? Answer with one word,

‘yes’ or ‘no.’
• Does this image contain damaged trees? Answer with

one word, ‘yes’ or ‘no.’
• Does this image contain water? Answer with one word,

‘yes’ or ‘no.’

We did not encounter any difficulties with improperly
formatted responses with either LLaVA-NeXT or GPT-4o

A.6.2. GPT-4o Prompt
The batch size limit in GPT-4o’s batch processing was an
obstacle to evaluation. The number of tokens which can
be queued for processing by GPT-4o is capped, meaning
that batches must be submitted in serial. The size of each



(a) mAP by event type for validation and test sets.

(b) mAP by state on test set.

Figure 2. Characterization of classifier performance by event type
and location.

batch is also limited, meaning that our test set had to be
split into more than 50 batches. As batch processing is not
guaranteed to start immediately on submission, evaluating
the set took multiple days.

To minimize the number of requests, we gave GPT-4o a
prompt asking it to emit a structured output answering each
question by filling in a JSON object:

Answer questions about this image by setting the ’an-
swer’ values in the following JSON data structure to
boolean values. The data structure should NOT con-
tain any ‘null‘ values when you are done. Respond
with ONLY the completed data structure: {”bridges any”:

Figure 3. Error vector L1 norm vs. the distance from a point in an
evaluation set to its nearest neighbor in the train set in CLIP space.
Validation data is plotted in blue and test data in orange.

{”question”: “Does this image contain bridges? An-
swer with a boolean true/false.”, “answer”: null}, “build-
ings any”: {”question”: “Does this image contain build-
ings? Answer with a boolean true/false.”, “answer”: null},
“buildings affected or greater”: {”question”: “FEMA de-
fines four levels of damage: affected, minor, major, and
destroyed. A building is affected if damage is mostly cos-
metic. A building has sustained minor damage if the dam-
age is repairable and non-structural. A building has sus-
tained major damage if the damage is structural or if it
is significant damage that requires extensive repairs. A
building is destroyed if it cannot be repaired. Does this
image contain any buildings which have sustained an ’af-
fected’ level of damage or greater? Answer with a boolean
true/false.”, “answer”: null}, “buildings minor or greater”:
{”question”: “FEMA defines four levels of damage: af-
fected, minor, major, and destroyed. A building is af-
fected if damage is mostly cosmetic. A building has sus-
tained minor damage if the damage is repairable and non-
structural. A building has sustained major damage if the
damage is structural or if it is significant damage that re-
quires extensive repairs. A building is destroyed if it
cannot be repaired. Does this image contain any build-
ings which have sustained an ’minor’ level of damage or
greater? Answer with a boolean true/false.”, “answer”:
null}, “debris any”: {”question”: “Does this image con-
tain debris? Answer with a boolean true/false.”, “answer”:
null}, “flooding any”: {”question”: “Does this image con-



tain flooding of any structures or land? Answer with a
boolean true/false.”, “answer”: null}, “flooding structures”:
{”question”: “Does this image contain flooded struc-
tures? Answer with a boolean true/false.”, “answer”:
null}, “roads any”: {”question”: “Does this image con-
tain roads? Answer with a boolean true/false.”, “answer”:
null}, “roads damage”: {”question”: “Does this image con-
tain damaged roads? Answer with a boolean true/false.”,
“answer”: null}, “trees any”: {”question”: “Does this im-
age contain trees? Answer with a boolean true/false.”, “an-
swer”: null}, “trees damage”: {”question”: “Does this
image contain damaged trees? Answer with a boolean
true/false.”, “answer”: null}, “water any”: {”question”:
“Does this image contain water? Answer with a boolean
true/false.”, “answer”: null}} Your entire response should
be a JSON object, so it will start with ‘{’ and end with ‘}’

A.7. Environmental Impacts
The models were trained on the TX-GAIA supercomputer
[1] using single nodes with two NVIDIA Tesla V100 GPUs.
An estimated 1000 kWh of energy was used to train the
models, including runs for architecture search, pretraining,
and hyperparameter optimization. Using the estimated Car-
bon Use Efficiency (CUE) of the system’s host facility—the
Massachusetts Green High Performance Computing Center
(MGHPCC) [3]— of 0.03 kg CO2/kWh, this corresponds
to an emissions of ∼ 30 kg CO2 in the training of the mod-
els. Similarly, using the Water Usage Efficiency of MGH-
PCC [3] of ∼ 1.7 L/kWh , we estimate ∼ 1700 L of water
used.
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