
A. Implementation Details

We implement TIML in PyTorch [32], using the learn2learn
library [3]. All MAML and TIML models are trained using
the same optimizer hyperparameters. Specifically, we use
an inner loop learning rate of 10→4. We use an Adam opti-
mizer on the outer loop (for both the classifier and the en-
coder), with a Cosine Annealing Learning rate (as per [2]).
For both the classifier and encoder, we use an initial learn-
ing rate of 10→4 and a minimum learning rate of 10→5.

When fine-tuning, we use the same learning rate as the
inner loop learning rate (10→4) for all models with the ex-
ception of the i) yield-estimation standard-MAML CNN,
for which we reduced the learning rate to 10→5 when fine-
tuning it to handle issues with an exploding loss and ii)
for the Omniglot models, for which we used an inner loop
learning rate of 10→2 to reflect the values originally used in
Finn et al. [13].

Both MAML and TIML are trained for 1000 epochs – we
selected the model checkpoint with the best performance on
the validation set (consisting of 10% of the training tasks, up
to a maximum of 50 tasks).

All TIML models were trained with the same task en-

coder hyperparameters (consisting of hidden blocks with
sizes [32, 64, 128] and a dropout probability of 0.2).

All models were trained on AWS. We used a
t2.xlarge instance to train the LSTM moels, and a
p2.xlarge instance to train the CNN models.

For the crop type clasification data set, all LSTM-based
classifiers were fine-tuned on the evaluation tasks for 250
gradient steps with batches containing 10 positive and 10
negative examples (as in [48]). We show the variety of agro-
ecologies represented in the crop type classification evalua-
tion tasks in Figure 3.

For the yield estimation data set, all models were fine-
tuned on each county for 15 gradient steps, with batches of
size 10. The reduced fine-tuning steps relative to the crop
classification data set is due to the much lower amount of
data available for each county (compared to the crop classi-
fication evaluation tasks). Some counties did not have any
fine-tuning data available – the results for these zero-shot
counties are shared in Appendix B.

For the Omniglot data set, models were finetuned for a
single step to reflect the approach originally used in [13].

A.1. Forgetfulness

We describe the thresholds used to define task memoriza-
tion in Table 4.

For the crop-type and yield estimation experiemnts, a
training task was forgotten if it met the threshold for forget-
fulness continuously over the last 20 epochs. For the Om-
niglot data sets, the reduced tasks-per-epoch and increased
variance per task (since any 5 characters in an alphabet
could be used) motivated us to increase this lookback to
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Figure 3. Example 1km → 1km satellite images of the evaluation
regions, demonstrating the variety in field sizes and agroecologies
being evaluated. (Images were obtained from Google Earth Pro
basemaps comprised primarily of high resolution Maxar images,
and are reproduced with permission from [48])

100 epochs. For the crop type classification, we note that
the training batches were balanced to contain 10 positive
and 10 negative examples, making AUC ROC an appropri-
ate metric.

A.2. Task augmentation for geospatial MAML

Defining tasks according to their geospatial boundaries al-
lows for a form of weak task augmentation, by including
nearby datapoints which are not explicitly within the bound-
ary. For example, using a rectangular bounding box instead
of a polygon when defining a political boundary includes
nearby points which may not be inside the polygon. Sim-
ilarly, for the yield estimation data set we include nearby
counties in tasks for MAML and TIML.

B. Zero-shot learning

For the Yield estimation task, some counties did not appear
in the training data but were present in the evaluation data
(i.e. if the first year of data for a county is 2011, then there
will be no training data for that county for the evaluation
year 2011).

For these counties, the model is therefore evaluated in a
zero-shot learning regime (the county is not present when
training the meta-model, or during fine-tuning).

We record the results of the yield model in a zero-shot
learning regime below in Table 5. These results are included
in the overall results reported in Table 2.

We highlight that very few counties are in this zero-shot
regime, but include these results for completeness.

C. Random Forest hyperparameters

We consider two methods of hyperparameter selection for
the random forest model:
• Using the default hyperparameters which accompany the

scikit-learn implementation.
• Conducting a random grid search with 5-fold cross val-

idation. In this case, the hyperparameters are selected per
randomly seeded run (i.e. different seeds of the same task
may have different hyperparameters). We specifically



Task Metric Threshold Total Tasks Removed Tasks

Crop Classification AUC ROC → 0.95 463 141 (30%)
Yield Estimation RMSE ↑ 4 750 179 (24%)
Grouped-Omniglot Accuracy → 0.99 50 4 (8%)

Table 4. The metrics and thresholds used to define task-memorization for each task, and the average number of tasks removed by the end
of training. ↑ indicates that it is a lower threshold (we remove any task with an average metric above this threshold) while ↓ indicates an
upper threshold (we remove any task with an average metric below this threshold).

Model 2011 2012 2013 2014 2015

# counties 7 9 5 6 5

LSTM + TIML 8.99 12.93 17.19 9.97 11.22
CNN + TIML 10.44 7.02 9.81 7.25 11.89

Table 5. Zero-shot learning results: RMSE of the TIML model
when measured only on counties not present during training (or
fine-tuning). We note that these results were obtained with no
training data about the county, in a zero-shot learning regime. The
number of counties being tested is additionally recorded.

Task AUC ROC F1

Tuned
RF

Kenya 0.574± 0.015 0.536± 0.017
Togo 0.895± 0.001 0.757± 0.002
Brazil 0.921± 0.016 0.003± 0.002
Mean 0.797 0.432

Default
RF

Kenya 0.578± 0.006 0.559± 0.003
Togo 0.892± 0.001 0.756± 0.002
Brazil 0.941± 0.004 0.000± 0.000
Mean 0.803 0.441

Table 6. The results of the tuned Random Forest and the Random
Forest with the default hyperparameters.

conduct a grid search of the following hyperparame-
ters and values: "n estimators": [10, 100,
200], "max depth": [10, 50, None],
"m samples leaf": [1, 2, 5]. With a 5-fold
cross validation, this trains 45 models per seed and
selects the best performing set of hyperparameters.

The results of the tuned model (compared to the default
implementation) are shown in Table 6, demonstrating the
insensitivity of the random forest to hyperparameter tuning.
Since the Random Forest with default hyperparameters ob-
tains (slightly) better mean AUC ROC and F1 scores, we
report these scores in the main paper.

We hypothesize that two factors drive this insensitivity:
i) the small size of the evaluation tasks’ training data sets, ii)
the shift from points in the training sets to polygons in the
test set (which better represent real world use of the model).

D. FiLM parameter clusters

We include a plot of FiLM [35] parameters in Figure 4,
demonstrating the strong clustering for certain classes such
as non-crop.



Figure 4. A plot of the FiLM [35] parameters for the crop-type classification task, reduced to 2 dimensions using t-SNE, coloured according
to their crop label. We also included the Silhouette score of the embeddings in their original dimensions for reference. This shows strong
clustering of certain classes (e.g. non-crop).
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