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Supplementary Material

A. Why “Panopticon”?
The idea of the panopticon was first suggested by the
philosopher Jeremy Bentham [2] as an ideal model for effi-
cient prison design, where a single person could watch over
an entire prison. Michel Foucault later reinterpreted it as a
powerful metaphor for repressive systems of power, control
and surveillance in modern societies [9], something that is
perhaps even more relevant today with the proliferation of
digital surveillance technologies.

We are well aware of the term’s loaded history and con-
troversial connotations; so why choose it? We want to co-
opt this term and flip its meaning, using it as a metaphor for
systems that can keep a watchful and benevolent eye over
our planet. Instead of surveilling people, Panopticon(s) can
observe Earth itself—its changing landscapes, ecosystems,
and climate patterns.

The beauty of our model is that, like the original panop-
ticon concept, it provides comprehensive visibility from a
single vantage point. But unlike Bentham’s prison design,
our goal is not control and fear, but rather understanding and
monitoring. There is also a technical parallel that we find
fitting: the original panopticon was designed to see every-
thing from a central position, regardless of where attention
was directed. Similarly, our model can “look” through any
sensor configuration without needing specific adaptations—
a sensor-agnostic vision that mirrors the all-seeing nature
of the conceptual panopticon, but repurposed for planetary
good.

B. Code and data availability
All data loaders and model code will be contributed to the
TorchGeo library [18] for reproducibility and ease of future
experimentation.

C. Datasets
C.1. Pre-training datasets
We organize the four pretraining datasets as shown in Table
1 of the main text by geographical footprint, where a foot-
print is defined by images having an exact geo-reference
match. During pretraining, from each footprint, we ran-
domly sample a number of “snapshots” as shown in Fig. 1.

fMoW fMoW [5] consists of data from 4 MS satellite sen-
sors, QuickBird-1 and GeoEye-2 having 4 channels (RGB,
NIR), while WorldView-2 and -3 have 8 channels, with
GSDs typically ranging from 1–2 m. Additionally, the
dataset also includes pansharpened versions of these same
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Supp. Fig. 1. Snapshots: examples of snapshots taken from dis-
tinct footprints. Our pretraining dataset consists of various sensor
modalities, channels, GSDs, scales, and timesteps acquired from
across the Earth’s surface. Different channels, GSDs, and footprint
sizes provide information about different attributes of the geospa-
tial objects. Note: some images are shown in false colors to enable
mapping from non-visible spectra.

images in RGB which have a GSD < 1 m. This dataset
was chosen for its global spatial coverage, wide spectral
coverage1 and very low GSD values, along with extensive
functional coverage of human modified land cover types.
Moreover, this dataset also represents a large variance in
time of capture, off-nadir angles, both of which affects il-
lumination of targets. Since spatial footprints were avail-
able for all images, we generate an geographically indexed
version of this dataset, which will be released with the rest
of the code. Additionally, we remove images greater than
1024 px, which are typically the pansharpened RGB im-
ages, to reduce memory overheads.

fMoW-Sentinel fMoW-Sentinel [7] was created to be an
exact copy of the locations captured by fMoW, but with
Sentinel-2 imagery. We created a combined dataset from
fMoW and fMoW-Sentinel by indexing by footprint and
sensor type. Together, these two datasets capture sur-
face properties from five separate sensor platforms between
2002 and 2022, providing a lot of natural variation for a
given footprint. Finally, the footprints of each image vary

1including “non-standard” bands, i.e. those with spectral coverage out-
side those of the popular open-data sources such as Landsat and Sentinel
series.



Supp. Fig. 2. Cross-sensor invariance. In addition to train/val/test splits, we also split datasets across sensors to explicitly test sensor
invariance. y-axes on the heatmap represent training sensors and x-axes, test sensors. The diagonals represent same-sensor for train
and test, and are grayed-out, while off-diagonal elements represent cross-sensor results with values expressed as percentage differences
from the diagonals. This enables visualization of the change in cross-sensor performance relative to same sensor, expressed in (negative)
percentages. Left: splits are across synthesized sensors from the HS EnMAP sensor using spectral convolution - MODIS, Sentinel-2
and Planet SuperDove, for any-sensor models. Right: reBEN; splits are implemented across Sentinel-1 and Sentinel-2 sensors, for all
any-sensor and many-sensor models, except SenPaMAE which cannot process SAR imagery. Panopticon consistently outperforms other
any-sensor models. Note that the value ranges differ for the two sub-figures.

tremendously, from 0.2 to 25 km2, providing a large range
of features at different scales. This combined dataset con-
sists of 89,666 unique footprints, where each footprint can
have dozens of images across these sensors.

MMEarth Multi-modal Earth (MMEarth) [14] was re-
leased as a paired dataset of multiple modalities that include
Sentinel-1 SAR, Sentinel-2 MS, elevation, and other paired
modalities. Most importantly, the Sentinel-2 data included
multiple processing levels (L1C and L2A), and Sentinel-1
data was captured in all 4 polarization combinations (VV,
VH, HH, HV) and in both orbits (ascending, descending).
This data was primarily included to model the effects of
polarization and orbit for SAR data and processing levels
for optical. Moreover, this extensive dataset comprises of
1,239,937 unique footprints equitably distributed according
to land cover types, each of which providing a pair of S1
and S2 images.

SpectralEarth SpectralEarth [3] is the largest open
source hyperspectral dataset available at the time of writ-
ing comprising of 450 K patches sampled globally by
the EnMAP satellite [11], made available by the German
Aerospace Center (DLR). This dataset additionally provides
four downstream benchmark tasks using data from the same
sensor, but utilizing non-overlapping patches, separate from

pretraining. This dataset was included for its rich spectral
diversity, enabling the model to learn HS characteristics and
simulate any arbitrary multispectral band. SpectralEarth
provides 415 K unique footprints, each of which provides
a single HS image of 202 bands.

SatlasPretrain SatlasPretrain consists of 30 TB of im-
agery across Sentinel-1, Sentinel-2, Landsat-9, and NAIP
sensors. We utilize only the first three, as NAIP geographic
coverage is limited to the United States and spectrally con-
sists of only RGB and NIR bands. We created a unified
indexed dataset comprising of 768,800 unique footprints,
where each footprint can contain up to 3 sensor images
taken across 2022. It is also the only large pretraining
dataset to contain thermal images from the Landsat 9-TIRS
sensor.

C.2. Evaluation datasets

The utilize the following benchmark task and datasets.
Where possible, we utilized existing Python libraries such
as TorchGeo [18] and GEO-Bench [13]. For a complete list
of datasets, please consult Tab. 1. Most datasets are imple-
mented using the TorchGeo library [18], when available.

In the following, we outline any modifications we make
to standard datasets:



SpaceNet We utilize the SpaceNet 1 dataset from Torch-
Geo, which is a building footprint segmentation task over
the city of Rio de Janeiro with 8 band MS images and 3
band pansharpened RGB images captured by WorldView
2. We utilize only the 8-band images. Since the original
dataset is only available with labels for the training set, we
randomly split the dataset into training, validation and test
splits with a 80:10:10 ratio.

D. Additional Results
D.1. Sensor invariance
We explicitly test for a model’s ability to generate stable
representations regardless of the sensor input. To do this,
we implement an additional split dimension on datasets that
have paired sensors, splitting on the sensor. We use the
10 EnMAP-Corine [3] dataset where we employ spectral
convolution to simulate MODIS, Sentinel-2, and Planet Su-
perDove sensors (Fig. 2 (left)) and the 12 reBEN [6] dataset
that has paired imagery from Sentinel-1 and Sentinel-2
(Supp. Fig. 2 (right)). Models are trained on the training
split of the dataset using a single sensor, while being val-
idated and tested on a corresponding split of the dataset,
using data from a different sensor. We then plot the relative
difference to the same-sensor setting as shown on the off-
diagonal cells. This allows us to validate how close repre-
sentations generated from one sensor are to ones generated
from a different sensor on the same dataset and prediction
objective. Ideally, the off-diagonal cell values are close to
0%, i.e. similar to the same-sensor setting. This is the case
for Panopticon for the Corine dataset in Fig. 2 (left), where
other any-sensor models struggle to generalize, especially
when training on fewer bands (SD with 8 bands) and test-
ing on sensors with more bands (MODIS with 16 bands).
This effect is less pronounced in Fig. 2 (right), where the
domain shift is very strong going from optical to SAR and
vice-versa. However, even in this setting Panopticon out-
performs all any-sensor and many-sensor models by 18%
and 14%, for the S1→S2 and S2→S1 settings on average,
respectively.

Absolute values for these experiments along with addi-
tional results on the fMoW dataset split according to three
included sensors, can be seen in Supp. Fig. 3.

D.2. Geo-Bench
We present the full results on Geo-Bench in Table 4 and
Table 5.

E. Utilizing complete spectral information
In the field of any-sensor models, DOFA [21] uses a hy-
pernetwork and the mean of the SRF to learn spectral en-
codings per channel, while SenPaMAE [16] utilizes the full
SRF. We experimented with the following mechanisms to

incorporate SRF and/or bandwidth information per channel,
in addition to the mean wavelength.

Spectral integrated positional encoding To achieve sen-
sor agnosticism, we introduce a novel spectral integrated
positional encoding (sIPE) that leverages known sensor
characteristics. Building on the channel-wise attention
mechanism from Nguyen et al. [15], we model each sen-
sor’s SRF as an un-normalized Gaussian kernel character-
ized by its mean, µ and standard deviation, σ. This was
inspired by noticing that such a Gaussian kernel provides
a relatively good fit for SRFs, such as Sentinel-2A and
Landsat-9 OLI sensors as shown in Fig. 4. We also exper-
imented with Epanechkinov kernel fitting, which provided
better R2 results, but since Gaussians are well understood
and have closed-form solutions, they tend to be easier to
work with. Hence, we model the SRF of a channel with
the parameters {µ, σ} of a Gaussian fit. We then extend ab-
solute positional embeddings [19] to incorporate this spec-
tral information through integration against sinusoidal basis
functions

PEspectral(µ, σ, 2i) =

∫
e−

(µ−λ)2

2σ2 · sin (ωiλ) · dλ,

PEspectral(µ, σ, 2i+ 1) =

∫
e−

(µ−λ)2

2σ2 · cos (ωiλ) · dλ,

(1)
where ω = 1

10000
2i
D

and i ∈ (0, D].
We derive the closed-form solution for Eq. (1) as fol-

lows:

PEspectral(µ, σ, 2i) = σ
√
2π · e−

ω2
i σ2

2 · sin(ωiµ),

PEspectral(µ, σ, 2i) = σ
√
2π · e−

ω2
i σ2

2 · cos(ωiµ).

(2)

Eq. (2) allows us to efficiently generate spectral PEs that are
added to channel tokens. Our hypothesis was that while the
query learns how best to fuse spectral tokens across chan-
nels, it can only do so based on the extracted low-level fea-
tures within those patches. Adding the sIPE to the patch
tokens provides a spectral inductive bias to each token rel-
ative to its central wavelength and bandwidth, effectively
grounding the patch token to its physical capture attributes.

Spectral convolution Inspired by King et al. [12], we em-
ploy spectral convolution [4] as a spectral augmentation for
HS inputs. Given a source HS image comprised of i chan-
nels, xs(λ), and its spectral response function SRFs, a spec-
tral convolution R is defined as the integral of the product of
xs and SRFs, normalized by the integral of its SRF. To gen-
erate arbitrary MS channels with unknown SRFs, we model
their SRF, SRFt as un-normalized Gaussian kernel with a
mean wavelength, λt, and standard deviation, σt. Through
this process, we are able to generate novel multi-spectral



Index Name Name used in this paper Modifications

1 Corine [SuperDove] Spectral convolution from EnMap to Planet Superdove
2 Corine [MODIS] Spectral convolution from EnMap to MODIS
3 Hyperview [SuperDove] Spectral convolution from Intuition to SuperDove
4 Hyperview [MODIS] Spectral convolution from Intuition to MODIS
5 TropicalCyclone TC TorchGeo, we use 10% of train
6 DigitalTyphoon DT TorchGeo, we use 10% of train
7 SpaceNet 1 SpaceNet 1 Randomly split the train set into train, val, and test (80:10:10)
8 EuroSAT m-eurosat GEO-Bench
9 BrickKiln m-brick-kiln GEO-Bench
10 EnMAP-Corine Corine Original 202 band dataset
11 RESISC45 RESISC GEO-Bench
12 reBEN-S2
13 reBEN-S1
14 ForestNet m-forestnet GEO-Bench
15 So2Sat m-so2sat GEO-Bench
16 PV4Ger (cls.) m-pv4ger GEO-Bench
17 PV4Ger (segm.) m-pv4ger-seg GEO-Bench
18 Cheasapeake Landcover m-chesapeake-landcover GEO-Bench
19 Cashew Plantation m-cashew-plantation GEO-Bench
20 SA Crop Type m-SA-crop-type GEO-Bench
21 NZ Cattle m-nz-cattle GEO-Bench
22 NEON Tree m-NeonTree GEO-Bench
23 fMoW Subset to WV2+WV3 sensors

Table 1. Summary of all evaluation datasets and the modifications made to them.

views from any HS source, extensively expanding the spec-
tral augmentation capabilities of this framework. We hy-
pothesize that this combination may prove to add useful
spectral inductive biases to the model.

Evaluation To evaluate these design choices, we run the
evaluation suite on a model trained according to the speci-
fications laid out in Sec 3.5, i.e. identical to the model de-
scribed in the main paper. We call this model Panopticon-
IPE. The results are shown in Tab. 2.

Comparing these results to Tab 2 & 3, we see that
Panopticon-IPE is relatively close in performance to Panop-
ticon, and in some cases (TropicalCyclone) even excels.
However, on average this model performs worse than our
default settings, and as a result, we did not include these
methods in the main paper. We leave these findings for the
benefit of future researchers.

F. Technical details

F.1. Pre-training
Implementation of Channel Attention We implement
the initial shared 2D convolution of the PE with a 1× p× p

3D convolution [1], where p is the patch size. Note that im-
ages within a batch can originate from different sensors in
our pipeline and, thus, the number of channels is not con-
sistent within a batch. To efficiently compute the cross at-
tention for batched inputs, we hence employ padding and
masking.

Hyperparameters We follow most of the DINOv2 con-
figuration with the following changes: We multiply the
learning rate of the ViT blocks in the backbone by 0.2, re-
duce the iBOT loss weight to 0.1, and remove the KoLeo
regularizer. We performed early off-the-record ablations on
these choices. Apart from that, and for both stages 1 and 2,
we train for 70 artificial epochs with 1250 iterations each,
with the AdamW optimizer, a base learning rate of 5e-4,
standard learning rate scaling lr·bsz/256, and a linear learn-
ing rate warmup for 5 epochs followed by a cosine decay to
a minimum 1e-6 learning rate.

Metrics For details on the average metrics defined in the
ablations, see Tab. 3.



Supp. Fig. 3. Cross-sensor invariance (absolute values). In addition to train/val/test splits, we also split datasets across sensors to explicitly
test sensor invariance. y-axes on the heatmap represent training sensors and x-axes, test sensors. The diagonals represent same-sensor
for train and test, while off-diagonal elements represent cross-sensor results with all values expressed as absolute performance values as
percentages. Left: splits are across QuickBird-2 (QB2) / GeoEye-1 (GE1) which are RGB-NIR. Right: splits are across synthesized sensors
from the HS EnMAP sensor using spectral convolution - MODIS, Sentinel-2 and Planet SuperDove, for any-sensor models. Bottom:
reBEN; splits are implemented across Sentinel-1 and Sentinel-2 senors, for all any-sensor and many-sensor models, except SenPaMAE
which cannot process SAR imagery. Panopticon consistently outperforms other models in both settings. Note that the value ranges differ
for each sub-figure.

Supp. Fig. 4. Spectral response function (SRF) fitting for Sentinel-2 (left) and Landsat 9 (right).

F.2. Evaluation

All tasks were executed on either a 40 GB A100 or a 48 GB
L40S GPU. The batch size is optimized for each task and
model to maximize GPU memory and the base learning rate
lr is scaled by the batch size according to the linear scaling
rule lr · bsz/256 [10]. In our evaluations, we use the follow-
ing tasks types.

kNN k-nearest neighbors (kNN) with k = 20 and tem-
perature 0.07 following Reed et al. [17].

Linear probing We mainly follow the implementation of
DINOv2 and sweep multiple extraction methods. In partic-
ular, we extract the tokens from the last one or four trans-
former blocks and aggregate them by concatenating the cls
tokens, average pooling, or the default aggregation sug-
gested by the specific model at hand. For each aggregation,
we sweep the 13 base learning rates 1e-5, 5e-5, 1e-4, 5e-4,
1e-3, 5e-3, 1e-2, 5e-2, 0.1, 0.5, 1, 5, and 10, resulting in
2 · 3 · 13 = 78 runs. Note that we use an extension of the
DINOv2 implementation that computes all these different
configurations simultaneously from a single forward pass



Table 2. Performance metrics for Panopticon-IPE across various
datasets

Dataset Score

Classification (Accuracy %)

m-eurosat 96.1
m-brick-kiln 95.8
m-pv4ger-cls 95.8
RESISC45 91.2
m-forestnet 54.0

Segmentation (mIoU %)

m-pv4ger 95.4
m-nzcattle 92.8
spacenet1 90.3
m-neontree 79.6
m-chesapeake 78.0
m-cashew 59.1
m-sacrop 52.3

Multi-Label Classification (mAP %)

Corine-MODIS 80.0
Corine-SuperDove 79.8

Regression (MSE)

DigitalTyphoon 0.93
Hyperview-MODIS 0.35
Hyperview-SuperDove 0.35
TropicalCyclone 0.28

of the backbone. We train for 50 epochs with a 0.9 momen-
tum Stochastic Gradient Descent optimizer. We also add
a trainable batch normalization before the linear head. For
the cross-sensor evaluations in Fig. 2 and Fig. 3, we only
extract tokens from the last transformer block to ease com-
patibility issues across models that use different encoders
for SAR and optical modalities.

Linear probing with re-initialized patch embedding
We replace the patch embedding of the model with a ran-
domly initialized 2D convolution layer with the correct
number of channels of the dataset at hand. We add a train-
able batch norm and linear head to the encoder, unfreeze the
new patch embedding and freeze the remaining encoder. We
fix the feature aggregation to the default one suggested by
the model authors and sweep the base learning rates 0.01,
0.001, 0.0005, and 0.0001 with 50 epochs each, stochas-
tic gradient descent optimizer and 5 epochs of learning rate
warmup.

AnySat and Galileo presented unique challenges due to
the way they implement modality specific encoders. For
AnySat, we pick a specific modality, and retrain the 2D
convolution layer of that branch; we picked the NAIP en-
coder since it does not implement temporal attention, which
consumes significant memory and compute. For Galileo,
this was not possible since they use a channel grouping
where each group produces a set of independent tokens,

unlike other models where the channel dimension is col-
lapsed. To replace this, we would have to create a new group
with a custom number of channels which would break how
Galileo processes tokens in groups. Furthermore, Galileo
employs FlexiPatchEmbed, which is trained by randomiz-
ing the patch size during pretraining. To properly train this
module, we would need to mimic that during evaluation,
which was beyond the scope of the evaluation phase of this
paper. Therefore, we omitted evaluating Galileo in tests
that required retraining the patch embed module for domain
adaptation.

Semantic segmentation We freeze the backbone and add
trainable standard modules from the MMSegmentation li-
brary [8]. In particular, we use a Feature2Pyramid as neck,
a UPerNet decoder and an auxiliary FCNHead. We sweep
the base learning rates 1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6 and
utilize the AdamW optimizer for 50 epochs with no learning
rate warmup.

Model adaptations During evaluation, we picked the im-
age size that the model was natively trained on to maximize
that model’s ability to produce representations.

G. Additional ablations
Spectral augmentation In line with the DINO ablation
on scales in random resized crops, we ablate our spectral
size as (1, s), (s, 13) for s ∈ {2, 4, 8, 13}. In Table 6, we
see that s = 4 performs best.



Agg. Id Dataset Task details Metric

MSacc 1 m-eurosat kNN, k = 20, T = 0.07 top-1 micro accuracy

2
m-eurosat

without RGB channels kNN, k = 20, T = 0.07 top-1 micro accuracy

SARacc 3 m-eurosat-SAR [20] kNN, k = 20, T = 0.07 top-1 micro accuracy
4 m-eurosat-SAR linear probing for 10 epochs top-1 micro accuracy

SimmAP 5 Corine-4
linear probing on

10% subset for 10 epochs
top-1 micro

multilabel average precision

6 Corine-12
linear probing on

10% subset for 10 epochs
top-1 micro

multilabel average precision
Avg 1–6

7 RESISC45 kNN, k = 20, T = 0.07 top-1 micro accuracy
8 m-eurosat only RGB channels kNN, k = 20, T = 0.07 top-1 micro accuracy

Table 3. Metrics used to inform design decisions and reported in the ablation section of the main text. The aggregation metric is computed
as the average of all its metrics. Corine-n denotes the Corine dataset subsampled to n fixed randomly-selected channels.

m-brick-kiln m-eurosat m-forestnet m-pv4ger m-so2sat reBEN
(S2) (S2) (L8) (RGB) (S2) (S2)

DINOv2 97.5 95.5 53.5 97.5 60.8 80.1
CROMA 94.5 91.1 - - 53.5 79.4
SoftCon 94.9 92.2 - - 52.1 80.6
AnySat 90.3 87.6 50.9 92.8 42.5 76.8
Galileo 93.1 88.6 - - 54.2 76.5
SenPaMAE 83.9 77.5 33.5 87.1 33.7 63.8
DOFA 95.8 92.9 53.2 97.4 54.2 78.8
Panopticon 96.7 96.4 56.3 96.4 61.7 83.9

Table 4. Linear probing on GEO-Bench classification datasets and reBEN. We report micro accuracy for single-label and mean average
precision for multi-label datasets in percentages.

m-cashew m-chesapeake m-neontree m-nzcattle m-pv4ger m-sacrop
(S2) (RGBN) (RGB) (RGB) (RGB) (S2)

DINOv2 65.9 78.5 80.9 92.7 96.9 51.2
CROMA 44.3 - - - - 48.4
SoftCon 54.5 - - - - 51.3
AnySat 38.8 75.9 79.6 92.5 92.2 39.5
Galileo 40.4 - - - - 39.5
SenPaMAE 40.7 59.9 79.5 89.5 78.3 39.3
DOFA 56.4 78.2 80.4 92.8 96.3 51.3
Panopticon 59.3 78.1 79.6 92.6 95.2 52.6

Table 5. GEO-Bench segmentation performance. We report mIoU in percentage.

s 2 4 8 13

MSacc 81.2 85.3 83.6 81.2

Table 6. Ablation of non-overlapping spectral crop size.
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