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Abstract

Event cameras capture scene changes asynchronously on
a per-pixel basis, enabling extremely high temporal resolu-
tion. However, this advantage comes at the cost of high
bandwidth, memory, and computational demands. To ad-
dress this, prior work has explored event downsampling, but
most approaches rely on fixed heuristics or threshold-based
strategies, limiting their adaptability. Instead, we pro-
pose a probabilistic framework, POLED, that models event
importance through an event-importance probability den-
sity function (ePDF), which can be arbitrarily defined and
adapted to different applications. Our approach operates in
a purely online setting, estimating event importance on-the-
fly from raw event streams, enabling scene-specific adapta-
tion. Additionally, we introduce zero-shot event downsam-
pling, where downsampled events must remain usable for
models trained on the original event stream, without task-
specific adaptation. We design a contour-preserving ePDF
that prioritizes structurally important events and evaluate
our method across four datasets and tasks—object classifi-
cation, image interpolation, surface normal estimation, and
object detection—demonstrating that intelligent sampling
is crucial for maintaining performance under event-budget
constraints.

1. Introduction
Event cameras, also known as neuromorphic cameras, differ
fundamentally from conventional RGB sensors. Instead of
capturing images at fixed frame rates, they asynchronously
detect changes in intensity, producing a stream of events.
Each event encodes its pixel location, precise timestamp
(microsecond resolution), and polarity, indicating whether
the intensity increased (ON) or decreased (OFF). Key ad-
vantages of event cameras include a high dynamic range
(up to 140 dB), low power consumption, no motion blur,
high temporal resolution, and low latency. These properties
make them well-suited for tasks such as video deblurring,
high-speed object detection and tracking, and super-slow-
motion video synthesis.
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Figure 1. Cup scene from N-Caltech101. By selectively retain-
ing important events, POLED improves efficiency while main-
taining task-relevant details, unlike naive uniform sampling. Top:
Original event stream. Middle: Uniformly downsampled events.
Bottom: Downsampled events with POLED, which adapts to the
scene to preserve structured information, making contours more
explicit.

However, the sheer volume of events they generate poses
significant challenges. Processing, storing, and transmit-
ting event streams efficiently remains a major bottleneck,
particularly in embedded systems or bandwidth-constrained
applications like ADAS (Advanced Driver Assistance Sys-
tems), or scenarios with limited data transmission capabili-
ties. To address this, event downsampling has emerged as a
key strategy, aiming to reduce event rates while preserving
the most relevant information in the scene.

To address this, most existing methods reduce the num-
ber of events by downscaling spatial dimensions or aggre-
gating events temporally, typically using predefined thresh-
olds. While effective in reducing data, these methods lack
adaptability and do not consider the importance of individ-
ual events.

We take a different approach, formulating event down-
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sampling as a stochastic process. Given an estimated event-
importance probability density function (ePDF), incoming
events are sampled probabilistically based on their likeli-
hood of belonging to the distribution. This framework is
adaptive, allowing the downsampling strategy to adjust dy-
namically to scene statistics or to the task at hand by mod-
ifying the ePDF on the fly. To mimic realistic scenarios-
where a camera is recording and bandwidth and computa-
tional resources are limited-, we adopt an online downsam-
pling perspective, where only past and present events are
available when making decisions. In contrast, offline meth-
ods can access future events, at the cost of increased mem-
ory usage and latency.

Additionally, most prior event downsampling methods
have been evaluated on simplistic classification tasks, mak-
ing it unclear how well they generalize to real-world appli-
cations. We argue that a truly effective downsampling strat-
egy should be tested across multiple datasets and tasks, and
evaluate our method on classification (NCaltech101 [15]),
surface normals estimation (ESFP [14]), frame interpola-
tion (Timelens [17]), and object detection in automotive
scenario for Gen1 Automotive Detection dataset [6].

Furthermore, we emphasize zero-shot event downsam-
pling, where the downsampled event stream is directly fed
into a pre-trained model without task-specific adaptation.
This ensures broad applicability in scenarios where retrain-
ing is impractical or infeasible due to limited accessibility,
computational resources, time, or data constraints. To com-
plement this, we also investigate the effects of retraining
the models on downsampled events, providing insights into
how adaptation impacts performance when retraining is an
option.

In summary, our contributions are as follows:
• We present a probabilistic online event downsampling

framework (POLED), where events are sampled based on
an arbitrarily defined event-importance probability den-
sity function (ePDF), allowing for adaptable and task-
agnostic event reduction.

• We introduce an ePDF that prioritizes the preservation of
edges, as well as two baselines.

• We evaluate our approach in a zero-shot setting, where
downsampled events are directly fed into pre-trained
models without task-specific adaptation, and validate
our method on four diverse tasks—classification (N-
Caltech101), object detection (Gen1 Automotive Detec-
tion), frame interpolation (Timelens), and surface nor-
mals estimation (ESFP)—demonstrating that intelligent
event sampling is key to preserving performance in event-
budget scenarios.

2. Related work
Modern event cameras produce an overwhelming number
of events, posing significant challenges in bandwidth, com-

putation, and memory. Efficient event stream management
is therefore crucial, with downsampling emerging as a key
strategy to reduce computational and bandwidth demands.

Early works explored event downsampling in spatial
and temporal dimensions by scaling event coordinates and
timestamps, adapting the sampling strategy to the dataset
[5]. Later approaches refined this by integrating events over
space and time using a counting strategy with refractory pe-
riods [9].

Other methods take inspiration from biological neurons,
reducing events based on the activation of multiple sensory
unit layers [2]. Spiking Neural Networks (SNNs) have also
been explored for downsampling, leveraging neuromorphic
processing to optimize event retention [10, 12, 13, 16].
Adaptive compression strategies, such as Huffman encod-
ing that dynamically adjusts to bandwidth constraints, have
also been proposed [4], along with pre-processing tech-
niques that use non-uniform spatial sampling via 3D grids
[3].

Beyond computational efficiency, research has also ex-
amined how downsampling affects human perception of
event streams. Studies have compared basic temporal
and spatial filtering with more advanced SNN-based ap-
proaches to assess how sparsification impacts interpretabil-
ity [11, 12].

Despite these advances, most existing methods rely on
fixed heuristics or task-specific optimizations, limiting their
adaptability across different applications.

In contrast to existing approaches, we formulate event
downsampling as an online stochastic process, where events
are sampled based on their likelihood of belonging to an es-
timated event distribution. This enables adaptive selection
based on event importance and scene statistics, rather than
relying on fixed heuristics or thresholds.

The closest work to ours is [1], which uniformly sam-
ples events each epoch to train a CNN, studying the effects
of event reduction and its interaction with CNN training pa-
rameters. However, their approach does not consider event
importance or zero-shot applicability. Instead, we focus
on the downsampling technique itself, evaluating its perfor-
mance across independent tasks and models trained on the
original event stream. Additionally, we investigate the ef-
fects of retraining with downsampled events, reaching sim-
ilar conclusions to [1] while emphasizing the role of intelli-
gent sampling.

We propose importance-based downsampling using
an event-importance probability density function (ePDF),
which can be arbitrarily defined and adapted to different set-
tings. To make this framework broadly applicable, we intro-
duce a generic formulation and processing pipeline, namely
POLED, capable of handling any valid ePDF. In this work,
we present a Poisson-based ePDF designed to prioritize
contour preservation, under the premise that contour-related
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events are more relevant for solving diverse tasks. Further-
more, we approach event downsampling from a purely on-
line perspective, making decisions based only on past and
present information, simulating a real-time scenario where
future events are unknown.

Finally, prior work has largely focused on sim-
ple classification datasets or introduced metrics favoring
classification-based evaluation. To provide a more compre-
hensive assessment, we evaluate our method on four chal-
lenging datasets, covering classification, frame interpola-
tion for super-slow-motion video generation, surface nor-
mal estimation, and object detection in an automotive set-
ting.

3. Method
In this section, we formalize event downsampling as a
stochastic process, present two baseline approaches, one
deterministic and one based on uniform sampling, and in-
troduce an adaptive Poisson-based event-importance proba-
bility density function (ePDF) designed to prioritize events
near edges, which we hypothesize to be generally important
across different tasks.

Overview of the proposed downsampling pipeline. The
original event stream E is processed using one of three
downsampling techniques: Deterministic, Uniform, or
POLED (our probabilistic approach). The resulting down-
sampled event stream Eω is then fed into a downstream task
model. The downsampling process is designed to retain the
most relevant events while reducing data volume for com-
putational efficiency.

3.1. Problem formulation
Event cameras operate asynchronously, responding inde-
pendently to changes in light intensity at each pixel. A com-
parator monitors intensity variations relative to a reference
level: if the increase surpasses a predefined threshold, an
ON event is generated; if the decrease exceeds the thresh-
old, an OFF event is triggered. No event is produced when
intensity remains unchanged.

Each event is represented as:

ek = (xk, tk, pk) , k ∈ N+ (1)

where xk = [xk, yk] is the pixel location, tk denotes
the timestamp at which the k-th event occurs, and pk ∈
{ON,OFF} specifies the polarity of the change.

A sequence of events, or an event stream, is defined as:

E = {ek}Nk=1 (2)

We define event downsampling as the problem of finding
a mapping Φα such that:

Φα : E 7→ Eα, Eα ⊆ E (3)

Φα(ek) =

{
ek, if condition holds
∅, otherwise

(4)

where Eα is the downsampled event stream, and α ∈ (0, 1)
denotes the downsampling ratio with respect to the original
event set E . Note that we define Eα as a subset of the origi-
nal events E , meaning that no new events are generated -nor
are existing ones modified— only a selection of events from
the original set is removed. This is in contrast to previous
works, where event information may be altered, aggregated,
or even synthesized.

3.2. Online Event Downsampling
To determine whether an incoming event ek is accepted or
rejected, we explicitly adopt an online downsampling ap-
proach, meaning that only past and present events in E1→k

are available at any given time. In contrast, an offline setting
would allow access to future events, i.e., decisions regard-
ing ek could be influenced by information in E1→l, where
l > k. A practical example of offline downsampling occurs
in methods that aggregate events within a temporal window
extending beyond the current event ek .

Enforcing event rate constraints. To ensure that down-
sampling adheres to a predefined event budget—modeled as
the downsampling ratio α—we introduce an event capping
mechanism. This mechanism enforces the constraint that
the number of retained events must not exceed the allowed
proportion α of the original stream, simulating real-world
constrains on bandwidth or computational resources.

Formally, given the incoming event ek we define the
downsampled event relation as:

r =
|Eα

0→k−1|
|E0→k−1|

(5)

where | · | is the dimension of the set. If at any point r > α,
the event ek is dropped, even if it would have otherwise
been accepted by the sampling method.

3.3. Baselines
To assess the effectiveness of our probabilistic event down-
sampling approach, we introduce two baseline strategies:
deterministic and uniform downsampling.

3.3.1. Deterministic Downsampling
The first approach we explore is a deterministic downsam-
pling strategy, where small bursts of events are retained
based on their timestamps within predefined temporal ac-
ceptance windows.

To achieve this, we define a small sliding temporal win-
dow Tw and partition it into two sub-intervals: an accep-
tance window Ta and a rejection window Tr, where Ta =
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Figure 2. Overview of the proposed downsampling pipeline. To simplify visualization, the downsampling process is illustrated for a
single pixel over time rather than across the full spatial-temporal event grid. The original event stream E is processed using one of
three introduced downsampling techniques: Deterministic, Uniform, or POLED (our probabilistic approach). Deterministic applies fixed
temporal acceptance windows, Uniform assigns a constant acceptance probability to each event, and POLED estimates an event probability
density function (ePDF) to sample events based on importance. The resulting downsampled event Eα stream is then used for downstream
tasks, preserving the most relevant events while reducing data volume.

Tw · α and Tr = Tw − Ta. In practice, we use Tw = 0.1
milliseconds. The downsampling process is anchored at
an initial reference time T0, which shifts as T0 = nTw,
defining the start of the n-th temporal window. An event
ek = (xk, tk, pk) is retained if its timestamp falls within
the acceptance window, defined as :

Φα(ek) =

{
ek, if T0 < tk ≤ T0 + Ta

∅, if T0 + Ta < tk ≤ T0 + Tw

(6)

3.3.2. Uniform Downsampling
The second baseline follows a uniform random sampling
strategy, where events are accepted independently with a
fixed probability α. Formally:

Φα(ek) =

{
ek, with probability α

∅, with probability 1− α
(7)

This baseline represents the simplest stochastic approach
to event downsampling and serves as a reference point for
evaluating our more structured probabilistic methods.

3.4. Probabilistic Online Event Downsampling
We now introduce Probabilistic Online Event Downsam-
pling (POLED), a flexible framework for event reduction
based on probabilistic sampling. Instead of applying fixed
rules or uniform selection, this approach models event
importance using an estimated event Probability Density
Function (ePDF). Given any valid ePDF f(·), each incom-
ing event ek is accepted or rejected based on its likelihood
of belonging to the estimated event distribution.

To achieve this, we define the mapping Φα as:

Φα(ek) =

{
ek, with probability PE(xk)

∅, with probability 1− PE(xk)
(8)

where PE(xk) represents the probability of accepting an
event ek = (xk, tk, pk) derived from the ePDF.

Pipeline. The downsampling pipeline is as follows. First,
we estimate the event probability density function (ePDF),
denoted as f(E1→k). The way to estimate this PDF depends
on how the event importance is defined. In this work, we
prioritize events clustered around edges (Sec. 3.4.1), as they
are generally more informative across different contexts.

To focus on recent changes in the scene, we estimate the
ePDF within a sliding temporal window of size T , using
events from the interval f(E(n−1)T→nT ). Following this
estimation, we evaluate the likelihood of an incoming event
ek for tk > nT , belonging to the estimated distribution fE .
For clarity, we drop the explicit temporal notation and refer
to the estimated event distribution as fE .

To convert the likelihood of an event ek into an ac-
ceptance probability, we define a mapping function S that
transforms the estimated likelihood fE into a probability
score:

PE(xk) = S(fE(xk)) (9)

The resulting probability PE(xk) is then used as the ac-
ceptance probability in a Bernoulli sampling process.

To ensure that PE(xk) is in the valid range [0, 1], the
mapping function S is defined as:

S(x) = σ
(
f∗
E (x) + (α− f∗

E (x)) ; θ
)

(10)

where f∗
E is the normalized form of fE by the min-max nor-

malization, its mean value displaced to match the downsam-
pling ratio α, and its values rescaled by the sigmoid function
σ to scale it to a probability range [0, 1].

We define the θ parameters to scale and shift the sigmoid
function, ensuring that no event has a probability of exactly
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0 (allowing all events a chance of being selected) or exactly
1 (allowing even the most likely events to be removed occa-
sionally).

σ(x; θ) =
1

1 + e−θ1(x−θ2)
(11)

In this work, we set θ = [θ1, θ2] = [5, 0.5], ensuring that
mid-range values follow a near-linear probability scaling,
while extreme values are adjusted to prevent hard accep-
tance or rejection.

On the importance of events. Defining a generic notion
of event importance is inherently ill-posed, as relevance de-
pends on the specific objective at hand. Ideally, our goal is
to define a fE that is task-agnostic and generalizable across
diverse applications. To this end, in the next section, we
introduce an approach that prioritizes edge events, as they
tend to be informative across a wide range of vision tasks.
However, edge-based downsampling alone may overlook
task-specific event distributions. For instance, in object de-
tection, events corresponding to objects of interest—such
as cars or pedestrians—are more valuable than background
events.

To bridge this gap, we propose incorporating task-
specific prior knowledge into the event downsampling pro-
cess. This is achieved by integrating a prior distribution that
modulates the estimated ePDF, introducing a bias that en-
sures the selection process aligns with task-relevant event
patterns. Whenever a task-specific prior is available, we
modify Eq. (10) (omitting x for clarity) as:

S(x) = σ
(
(fE · fp)∗ + (α− (fE · fp)∗) ; θ

)
(12)

where fp is the task-specific prior distribution, and (fE ·fp)∗
is the min-max normalized form of the product of the two
distributions. The prior fp can be derived from dataset
statistics, heuristically defined, or learned from data, de-
pending on the task requirements.

3.4.1. Poisson-based Event PDF
While event significance varies across applications, we ar-
gue that events that correspond to edges are generally infor-
mative across diverse tasks. Building on this intuition, we
introduce a Poisson-based method for estimating the ePDF,
designed to prioritize edge-preserving downsampling.

Poisson distributions are widely used to model the oc-
currence of discrete events in space and time, making them
well-suited for capturing the sparsity and stochastic nature
of event data. Given a rate parameter λ representing the ex-
pected number of events in a given region, the probability
mass function (PMF) of a Poisson-distributed variable k is:

P (k;λ) =
λke−λ

k!
(13)

In our case, we estimate an event probability density
function (ePDF) using a spatial Poisson process, where λ is
dynamically computed based on pixel-wise event densities
within a temporal window T . This allows us to prioritize
edge-preserving downsampling by assigning higher proba-
bilities to regions with structured event activity.

To model event importance, we define the ePDF as the
probability of at least one event occurring at a given spatial
location x within the temporal window [(n− 1)T, nT ]:

fE(x) = 1− P (0;λ(x)) = 1− e−λ(x) (14)

where λ(x) represents the event density at x over the tem-
poral window T .

Finally, we convert fE into an acceptance probability
using Eq. 9, ensuring that the sampling process priori-
tizes edge events while dynamically adapting to scene vari-
ations.

4. Experiments

We evaluate our proposed probabilistic event downsam-
pling method (POLED) across four diverse datasets, each
representing a distinct vision task. Our goal is to
assess both the generalization capabilities of our ap-
proach—particularly the Poisson-based ePDF defined in
Sec. 3.4.1, named as POLED-Poi in the results—and its
impact on downstream performance across various appli-
cations.

Our experiments cover the following datasets and tasks:
• N-Caltech101 [15] for object classification, using the

model from [7].
• Gen1 [6] for object detection in driving scenarios, lever-

aging the approach from [8].
• Timelens [17] for frame interpolation, evaluated with its

original model.
• ESFP [14] for surface normal estimation, with the

method introduced in the same work.
These datasets present a diverse set of challenges, al-

lowing us to evaluate the robustness of our downsampling
strategy beyond standard classification benchmarks. We
compare our method against our deterministic and uniform
downsampling baselines, introduced in Sec. 3.3, as well as a
recently proposed event downsampling approach EDS [9],
analyzing performance in both zero-shot scenarios and re-
training settings when applicable.

EDS [9]. To provide a broader comparison, we include
EDS(Event DownSampling), a recent method that simulates
a lower-resolution event camera by reducing both spatial
and temporal dimensions.

While originally designed for a different purpose, EDS
offers an interesting point of comparison: it represents
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Events N-Caltech101 [15] Gen1 [6] Timelens [17] ESFP-Real [14]

Accuracy ↑ AP50 ↑ Close Far AE ↓
Original 100% 84.4 68.8 32.47±4.6 32.04±1.8 28.50

EDS [9] 5% 5.2 0.4 29.58±5.0 24.10±1.6 30.05
Deterministic 5% 13.4 7.4 29.75±5.0 24.48±1.7 29.92
Uniform 5% 12.9 8.2 30.23±4.6 26.03±2.1 29.90
POLED-Poi 5% 27.4 10.3 30.39±4.6 26.87±2.4 29.84

EDS 10% 23.7 2.6 29.75±5.0 24.47±1.6 29.76
Deterministic 10% 41.5 18.7 29.96±5.0 24.66±1.7 29.51
Uniform 10% 40.3 19.9 30.89±4.5 27.45±2.0 29.52
POLED-Poi 10% 55.2 24.3 30.99±4.5 28.23±2.3 29.47

EDS 50% 77.9 61.6 30.97±4.6 27.37±2.3 28.57
Deterministic 50% 82.7 60.5 31.31±4.6 27.90±2.2 28.46
Uniform 50% 82.9 61.1 32.05±4.5 30.80±2.0 28.45
POLED-Poi 50% 83.3 61.8 32.07±4.5 30.82±2.1 28.46

Table 1. Results on a zero-shot setting of the four approaches for different levels of downsampling. For Uniform and POLED-Poi average
of several runs. Best in bold.

an alternative downsampling strategy—one that naively re-
duces resolution instead of selecting events based on im-
portance. By evaluating its performance in event-budget
scenarios, we can empirically assess whether simple spatio-
temporal downsampling is sufficient, or if intelligent event
selection is necessary to retain task-critical information.

4.1. Implementation details
We evaluate our approach using existing methods tailored
to each dataset and task. For N-Caltech101 and ESFP-Real,
we train the classifiers from [7] and [14] respectively on the
original event streams, as well as on the downsampled event
streams (Sec. 4.4). For Timelens and Gen1, we use the pre-
trained models and weights provided in [17] and [8], respec-
tively. Both models are trained on the original event streams
and zero-shot tested on the downsampled event streams.

To enforce an online processing constraint, we sequen-
tially load datasets and process events one-by-one. All
downsampling methods operate with a temporal window of
6 ms, approximately corresponding to 160 FPS. Downsam-
pling is performed entirely on the CPU, while all method-
related experiments were conducted on a single NVIDIA
Quadro RTX 8000 GPU.

4.2. Introductory results
Table 1 presents the zero-shot performance of the differ-
ent downsampling techniques accross all datasets and tasks.
We report the original performance using 100% of the event
stream, along with the zero-shot performance at 5%, 10%,
and 50% from the original events.

At low-event budget scenarios (5% and 10%), we ob-
serve that POLED-Poi, the Poisson-based ePDF method,
outperforms the deterministic and uniform downsampling

baselines in all datasets and tasks, by a considerable mar-
gin in some cases such as in N-Caltech101 and Gen1.
While events naturally cluster around edges, our results
suggest that further emphasizing edge information is cru-
cial for maintaining performance, particularly in low-event
regimes. At higher event budgets (50%), performance
differences among methods diminish, as essential task-
relevant events are naturally retained due to their inherent
concentration around contours.

Among all techinques, EDS [9] consistently performs
the worst across all datasets and tasks. We attribute this
to three key factors. First, the method applies spatial down-
sampling, reducing resolution before passing the events to
the downstream model. Since our evaluation setup as-
sumes a method-agnostic downsampling process, events
must be rescaled back to the original resolution, potentially
introducing artifacts and loss of fine-grained details. Sec-
ond, EDS integrates events within fixed temporal intervals,
which may not capture the temporal dynamics of the events
accurately, particularly in low-event regimes. Finally, the
combined effects of spatial and temporal aggregation may
alter the statistical distribution of the event stream, intro-
ducing a distribution shift that impacts downstream perfor-
mance.

4.3. Event importance

As previously discussed, not all events contribute equally
to solving a task. While event importance is inherently
task-dependent, our results suggest that events concentrated
around object contours generally play a crucial role across a
wide range of tasks. However, not all event concentrations
are equally important. While in Timelens most contours
contribute equally to solve the task, in the Gen1 dataset for
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(a) Objects distribution (b) Events distribution

Figure 3. Comparison of the distribution of a) bounding boxes in
the training set and b) raw event distribution in the Gen1 dataset.

Events N-Caltech101 (Accuracy ↑) Gen1 (AP50 ↑)

w/o prior w/ prior w/o prior w/ prior

Original 100% 84.4 - 68.8 -

POLED-Poi 5% 25.1 27.4 (+2.3) 9.3 10.3 (+1.0)

POLED-Poi 10% 52.0 55.2 (+3.2) 22.1 24.3 (+2.2)

POLED-Poi 50% 83.1 83.3 (+0.2) 60.9 61.8 (+0.9)

Table 2. Zero-shot performance of POLED (Poisson-based) down-
sampling on N-Caltech101 and Gen1, comparing results with and
without a task-specific prior.

car and pedestrian detection, events concentrated around ve-
hicle edges are far more critical than those outlining side-
walks.

We illustrate this in Figure 3. Comparing the distribu-
tion of training set bounding boxes (Fig.3a) with the raw
event distribution (Fig.3b), we observe a significant mis-
match between event locations and actual detections. This
suggests that POLED-Poi, which prioritizes high-density
regions, may oversample events in areas like trees on side-
walks rather than focusing on the most relevant contours.

To address this misalignment, we incorporate the train-
ing set bounding box distribution as a prior, using Eq. (12)
to modulate the ePDF and guide sampling toward the task-
relevant regions. Also, in N-Caltech101, we use a 2D Gaus-
sian distribution as the objects of interest tend to concentrate
at the center of the image. Table 2 presents the performance
of POLED-Poi with and without a task-specific prior, high-
lighting the performance gains achieved by incorporating
prior knowledge.

4.4. Task specific re-training
While zero-shot event downsampling is ideal for real-world
deployment—where re-training may not always be feasi-
ble—the performance gap between downsampled and full-
event models remains significant. To better understand
the upper bound of downsampling effectiveness, we re-
train models on the downsampled event streams for N-
Caltech101 and ESFP, allowing them to fully adapt to the
reduced event distribution.

0.1 1 10 100
0

20

40

60

80
⋆Objective

Sampling rate (%)

A
cc

ur
ac

y

EDS Det Uni POLED-Poi

Figure 4. Accuracy (↑) vs. sampling rate on N-Caltech101 [15]
for zero-shot (dashed) and re-trained (solid) models at different
downsampling levels. The purple star indicates the original per-
formance. The x-axis is in logarithmic scale.
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Figure 5. Mean Average Error (↓) vs. sampling rate on ESFP-
Real [14] for zero-shot (dashed) and re-trained (solid) models at
different downsampling levels. The purple star indicates the orig-
inal performance. The x-axis is in logarithmic scale.

Figures 4 and 5 compare zero-shot (dashed) vs. re-
trained (solid) performance across different downsampling
rates. Notably, in both cases, the amount of events required
to solve the task (i.e., achieving full-event performance) can
be reduced dramatically: on N-Caltech101, accuracy recov-
ers almost fully with as little as 5% of the original events,
and on ESFP, nearly identical performance is achieved with
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Method Total (ms/Kev) PDF (ms/Kev) Eval (ms/Kev)

Deterministic 4.90 - 0.45
Uniform 4.56 - 0.14
POLED-Poi 6.55 1.72 0.14

Table 3. Computational time per thousand events (ms/Kev) for
different downsampling approaches. Total represents the overall
downsampling time, PDF accounts for computing the event prob-
ability density function, and Eval measures the cost of the accep-
tance or rejection decision.

just 0.1% of the original event stream. This aligns with find-
ings from [1], which also demonstrate that models can adapt
to highly reduced event streams with appropriate training.

It is also important to note that the assumption that edge-
related events are crucial holds in N-Caltech101 (Fig. 4),
where the Poisson-based ePDF outperforms the baselines
when both training and testing on downsampled events. Ad-
ditionally, at higher event retention rates (90%), we observe
that downsampled models exceed the original full-event
performance, suggesting that our approach introduces a de-
noising effect, even though it was not explicitly designed
for that purpose.

4.5. Run time
Computational efficiency is critical for event-based pro-
cessing, particularly in real-time applications. Table 3 re-
ports the runtime of our proposed POLED-Poi compared
to the deterministic and uniform baselines. As expected,
estimating the ePDF introduces additional overhead, mak-
ing POLED-Poi approximately 1.4 times slower than the
baselines. However, our current implementation is written
in pure Python with a single blocking thread, represent-
ing a worst-case scenario for all techniques. Optimizing
the implementation in lower-level languages such as C++
or CUDA would significantly improve runtime across all
downsampling methods. Additionally, POLED can benefit
from parallelization, as the ePDF computation can be exe-
cuted in a separate thread, reducing the impact of its over-
head.

4.6. Qualitative results
We provide visual insights on how downsampling affects
the tasks by showing qualitative results in Figure 6. We
highlight the contour preservation of the Poisson-based
ePDF (POLED-Poi) estimation in contrast to the Determin-
istic or Uniform approaches.

5. Limitations and future work
While our proposed event PDF estimation and further
downsampling method is generic and can be successfully
applied in very diverse tasks, we find that generically deter-

EDS Deterministic

Uniform POLED-Poi

Original

Figure 6. Detailed output of the frame interpolation method [7]
by using the event stream downsampled to maintain 10% of the
original events. Even at low-event regimes, POLED-Poi is able to
keep the contour information (windows).

mine what makes an event relevant is an ill-posed problem,
as each event has its own relevance depending on the down-
stream task. An example we found in our research is based
on the Gen1 dataset, where the relevant events to solve that
concrete task (car and pedestrian detection) would not be
the same as the events needed to solve another task (e.g.
road lines segmentation).

Another limitation is on the computation time, as the
two baselines, Deterministic and Uniform, are much sim-
pler, thus faster, than the proposed PDF estimators. This
limitation can be addressed with parallelization and imple-
mentation on more appropriate coding languages, and will
be considered as future work.

6. Conclusion
We introduced POLED, a probabilistic framework for event
downsampling that models the process as an online stochas-
tic sampling problem. By estimating an event importance
probability density function (ePDF) on the fly, POLED en-
ables adaptive downsampling that prioritizes the most rele-
vant events. As a specific instance, we proposed a Poisson-
based ePDF designed to preserve edge information and
compared it against deterministic and uniform baselines.

To evaluate its effectiveness, we tested our method on
four diverse tasks: classification, frame interpolation, sur-
face normal estimation, and object detection. Our experi-
ments, conducted in both zero-shot and fine-tuned settings,
demonstrate that structured downsampling strategies signif-
icantly outperform naive approaches, particularly in low-
event regimes.

Future work includes exploring alternative ePDF formu-
lations, integrating learned event-importance models, and
optimizing implementations for real-time deployment on
neuromorphic hardware.
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