
Egocentric Event-Based Vision for Ping Pong Ball Trajectory Prediction

Supplementary Material

8. The aerodynamics model of a ping-pong ball
In this section, we provide an overview of the aerodynamics
model of a ping pong ball used in the paper, focusing on the
equations of motion that describe its trajectory. A standard
ping-pong ball moving through the air experiences four pri-
mary forces: gravitational force (Fg), buoyancy force (Fb),
drag force (Fd), and Magnus force (Fm). For our inves-
tigation, we can ignore the buoyancy force Fb = −mbg,
because the mass of the air displaced by the ping-pong ball
is negligible with respect to the mass of the ball m. We
also neglect the spin of the ball (Magnus force component
Fm), cause it is not directly observed by the vision sys-
tem due to the small dimension of the ball. Therefore,
the sum of the forces acting on the ball can be expressed
as

∑
F = Fg + Fd. The gravitational force is given by

Fg = −mg, where m represents the mass of the ball, and
g = [0, 0,−9.81]T is the acceleration due to gravity. The
drag force, which opposes motion through the air, follows
the equation Fd = − 1

2CdρA|v(t)|v(t), where Cd is the
drag coefficient, ρ is the air density, A is the cross-sectional
area of the ball and |v(t)| is the magnitude of the velocity
vector v(t). By substituting these forces, we obtain:∑

F = mg − 1

2
CdρA|v(t)|v(t) (11)

This simplifies the equation of motion to:

v̇k(t) = g − kd|v(t)|v(t) (12)

where we set kd = CdρA
2m . For a standard ping-pong

ball, the known values are: ρ = 1.225kg/m3, r = 0.02m,
m = 0.0027kg and Cd = 0.4. We additionally model
the motion of the ball by introducing a simplified bounc-
ing model. When the estimated z-coordinate of the ball is
lower than htable (determined using ArUco marker detec-
tion, as shown in Fig. 1) and vz is negative, we switch to
the bounce model:

v+
z = ev−

z , with 0 < e < 1.

Here, v−
z represents the velocity component along the

vertical axis just before impact, and v+
z is the velocity just

after. This model accounts for energy loss upon impact due
to inelastic collisions with the table.

8.1. Including Rotational Dynamics
A more precise representation of the ball’s motion should
account for its rotational dynamics, particularly the Magnus
force, Fm, which influences the ball’s trajectory. This force

arises due to the interaction between the ball’s spin and the
surrounding air, significantly affecting its movement, and it
is defined as follows:

Fm = CmρAr(ω × v) (13)

where Cm is the Magnus coefficient and ω is the angu-
lar velocity of the ping-pong ball. The equation of motion
including the Magnus force would then become:

v̇k(t) = g − kd∥v(t)∥v(t) + km(ω × v) (14)

or in its discrete formulation:

v(ti) = v(ti−1) +

−kd∥v∥ −kmωz kmωy

kmωz −kd∥v∥ −kmωx

−kmωy kmωx −kd∥v∥


v(ti−1)∆t+

 0
0
−g

∆t (15)

where km = CmρAr
m . When incorporating rotational

dynamics into the motion model, setting the initial con-
ditions of the differential equation requires also specify-
ing an initial estimate of the ball’s angular velocity. How-
ever, this quantity is not directly measurable from our ob-
servations, but it can be inferred from the trajectory data
{tBk

, p̂k, v̂k}k=1...K estimated from the measurements.

9. Sensing Latency Analysis
We present an analysis of the sensing latency of our algo-
rithm, which refers to the time window required to detect
motion events and produce reliable results. As described
in [6], an obstacle is detected using an event camera when
its edges generate an event. This occurs when the relative
motion between the camera and the obstacle causes a sig-
nificant intensity change, triggering an event. Prior work
[6] has shown that an obstacle’s edge produces an event
when its projection on the image plane moves by at least
one pixel. As already shown in [6], the time required for an
obstacle to traverse a pixel distance ∆u = 1 in the image
plane is given by:

τE =
1

v̂

∆ud2

fro +∆ud
(16)

where v̂ is the object’s relative velocity with respect to
the camera, d represents the obstacle’s distance along the
camera’s optical axis, ro is the obstacle’s radius, and f is

Figure 5. The sensing latency τE of an event camera with 640 ×
480 resolution and a focal length of 6 mm. The shaded green
region represents the ideal sensing latency conditions based on our
dataset, where the relative velocity between the ball and the Project
Aria glasses varies from approximately ∼ 4 m/s to ∼ 8 m/s.

the camera’s focal length. This calculation assumes that the
optical axis passes through the geometric center of the ob-
stacle, which is approximated as a segment. Figure 5 illus-
trates the theoretical sensing latency fo an event camera to
perceive a ∆u = 1 pixel motion in the image plane of a
ping-pong ball, as a function of distance d and speed v̂. In
our specific case, we aim to track the ball when struck by the
opponent’s racket, therefore the ball is typically observed at
distances d ranging from 2 to 3 meters.

10. Deep Conditional Generative Network

An overview of the variational autoencoder network intro-
duced in [16], which is employed for trajectory prediction,
and the outcomes of which have been discussed in Sec-
tion 5, is provided in this paragraph. The work proposes
a Deep Conditional Generative Network (DCGN) for real-
time trajectory prediction, mapping partial trajectories to
a latent Gaussian space to predict future points. In this
framework, a trajectory is represented as a probability dis-
tribution conditioned on observed data. Let x1:t denote
the observed trajectory up to time t, and xt+1:T repre-
sent the future trajectory to be predicted. The model effi-
ciently learns the conditional distribution p(xt+1:T |x1:t) =∫
p(xt+1:T |z,x1:t) p(z|x1:t) dz, which is achieved by in-

troducing a latent variable z that captures the underlying
dynamics of the trajectory. The training procedure involves
maximizing the evidence lower bound (ELBO) to approx-
imate the true posterior distribution. This method enables
better long-term prediction of complex trajectories com-
pared to LSTMs and differential equations, thanks to its

probabilistic modeling, uncertainty estimation, and efficient
latent space representation.

To assess the predictive capabilities of the DCGN model,
we conducted an additional evaluation on the ground truth
trajectories. By using different prediction horizon lengths
T , we analyzed how well the model can forecast future
motion while minimizing error. The obtained results, pre-
sented in Table 7, show that larger prediction horizons gen-
erally lead to better performance, as indicated by lower
Root Mean Squared Error (RMSE) values.

Horizon Time RMSE

0.01 0.2616
0.03 0.2055
0.12 0.1737
0.20 0.1470
0.30 0.1177

Table 7. RMSE values of the predicted trajectory across the entire
dataset for different horizon prediction times T .

The DCGN model was trained on ground truth trajecto-
ries upsampled to 0.8 kHz, using an 80/20 split for training
and validation. We observed that for short horizons, the
model struggles to produce accurate predictions, resulting
in high RMSE values. Figure 6 visually compares the pre-
dicted and ground truth trajectories for three selected hori-
zon values: T = 0.03 s, T = 0.1 s, and T = 2 s. The
results demonstrate that for T = 0.03 s, the predicted tra-
jectory deviates significantly from the ground truth, align-
ing with the poor performance reflected in Table 7. This is
also consistent with the findings in Section 5, where even
worse performance was observed when evaluating on noisy
measurements from the perception pipeline.

11. Complementary Evaluation Plots
In this section, we provide additional plots and evaluations
of the entire pipeline. First, we present error plots obtained
from the online trajectory prediction method, presented in
Sec. 5. Figure 8 highlights the gradual improvement of the
trajectory prediction as the ball is continuously tracked and
its path recalculated over time, using different sample tra-
jectories. Each curve represents a different game sequence,
with variations in duration due to differences in ball de-
tectability across sequences. The results demonstrate that
increasing the accumulation time window and recomputing
the trajectory with more recent measurements results in a
more accurate trajectory estimate.

Figure 7, on the other hand, shows the error distribution
of the predicted bouncing points on the table compared to
the ground truth counterparts. The visualization is consis-
tent with the results in Table 6, showing that the DCGM

(a) (b) (c)

Figure 6. Visualization of the predicted trajectory compared to the ground truth for different prediction time horizon values (a) T = 0.03 s,
(b) T = 0.1 s, and (c) T = 0.2 s. The x, y, and z components of the trajectory are shown, where the green segments represent the input to
the network (before the split), the red segments represent the ground truth after the split, and the blue lines indicate the predicted trajectory
with the 3σ standard deviation.

Figure 7. The plot shows the relative error of the impact point for
each predicted trajectory with respect to their ground truth coun-
terparts (each × represents an evaluated trajectory). A boundary
circle with r = 0.3 m is shown as a reference.

model and the standard high-frequency updates using dif-
ferential equation fitting exhibit a more concentrated dis-
tribution around the origin. In contrast, the low-framerate
model fitting produces a wider spread of points.

12. Audio Signals Peak Detection
The evaluation of our pipeline has been carried out on se-
quences beginning precisely at the moment the ball impacts
the opponent’s racket. To segment long game sequences,
we leveraged the microphone audio signals provided by the
Project Aria glasses recordings, as shown in Figure 9. By
monitoring these signals, a pattern of peak intensities was
observed, corresponding to four events: the Project Aria
user hitting the ball, the ball bouncing on the user’s half of
the table, the ball bouncing on the opponent’s half, and the
opponent hitting the ball. Each of these peaks exhibits dif-
ferent intensities due to their varying distances from the mi-

Figure 8. Error norm of the estimated bounce point on the XY
plane over time for different ball trajectories. The varying lengths
of the curves indicate differences in the duration for which the ball
is tracked across trajectories.

crophone. Specifically, the peak corresponding to the oppo-
nent’s hit has the lowest intensity. To refine our analysis, we
manually filtered the audio signal using signal processing
techniques. First of all, to enhance the relevant audio fea-
tures, we applied a high-pass Butterworth filter to remove
low-frequency noise. After filtering, peaks in the audio sig-
nal were detected using the find peaks function of the
scipy.signal library, after thresholding the peaks with
intensity higher than 1

4 of the magnitude of the time signal
y(t). The peak detection algorithm identifies local maxima
that satisfy these conditions, ensuring that only the peaks
of the opponent hitting the ball are captured. This process
was repeated across multiple microphones for robust detec-
tion. For further improvements, a neural network could be
trained to classify audio signals automatically. This would
enable real-time detection of the opponent’s racket ball hit,
optimizing computational efficiency by selectively trigger-
ing the detection pipeline.

Figure 9. Microphone audio signals from a sample Project Aria glasses recording during ping-pong game.

13. Comparison of Circle Fitting methods
Circle fitting is a crucial component of our algorithm, as
it plays a fundamental role in estimating the depth of the
ball in our monocular setup. When detecting a ping pong
ball at distances of up to 3 meters using a 640 × 480 res-
olution camera, even a one-pixel error in the estimated ra-
dius can result in a depth miscalculation of several centime-
ters. Since depth estimation directly influences the accu-
racy of the x and y coordinates, such errors can signifi-
cantly impact the overall pipeline. Our proposed method,
described in Section 3, is compared here with two alter-
native approaches: ellipse fitting and circle fitting using
Taubin’s method. The ellipse fitting technique determines
the mean center of the detected shape and applies Principal
Component Analysis (PCA) to estimate the orientation and
axis lengths. The semi-major and semi-minor axes are de-
rived from the square root of the eigenvalues of the covari-
ance matrix, while the orientation is dictated by the princi-
pal components. On the other hand, Taubin’s method is a
geometric circle fitting approach that minimizes algebraic
distance while maintaining invariance to scale transforma-
tions. Figure 10 illustrates the visual results of these meth-
ods. Both alternative techniques tend to underestimate the
ball’s radius, leading to inaccuracies in depth estimation.
In contrast, our method remains the only reliable approach,
ensuring consistent and precise measurements.

(a)

(b)

(c)

Figure 10. Side-by-side comparison of different circle fitting
methods for ball detection. (a) Our proposed method, (b) ellipse
fitting, and (c) Taubin’s method. The blue and red points represent
positive and negative events, respectively, while the black lines in-
dicate the estimated radius.

Figure 11. Time required for ego-motion compensation as a function of the number of generated events. Each dot representing a 5 ms time
window of events.

Figure 12. Time required for DBSCAN clustering of the scene’s dynamic part and circularity check, based on the number of pixels from
moving objects. Each dot representing a 5 ms time window of events.

	The aerodynamics model of a ping-pong ball
	Including Rotational Dynamics

	Sensing Latency Analysis
	Deep Conditional Generative Network
	Complementary Evaluation Plots
	Audio Signals Peak Detection
	Comparison of Circle Fitting methods

