
Dynamic EventNeRF: Reconstructing General Dynamic Scenes
from Multi-view RGB and Event Streams

Supplementary Material

Figure 7. Our portable setup in one of the recording rooms. It con-
sists of six hardware-synchronised iniVation DAVIS 346C colour
event cameras on tripods, connected to a workstation with 10m
optic fibre USB3 extension cables. We installed two additional
PCIe USB3 extension cards into the workstation to connect all
cameras with the required bandwidth.

This supplementary document provides additional experi-
ments and details on calibration, hyperparameters and base-
lines. We show how we calibrate our event camera response
function in Sec. 8. In Sec. 9, we describe the architecture of
our MLP network. Next, Sec. 10 includes additional details
on the baselines and their hyperparameters. We then describe
our datasets and explain the capture process in Sec. 11. We
demonstrate the performance of our method with additional
ablations on the number of supporting RGB frames (Sec. 12),
number of views (Sec. 13), and provide the full per-scene
ablation results in Tab. 3.

7. RGB frame quality
As a result of the low-light conditions (see Sec. 5.2), the ex-
posure durations of the RGB frames recorded by the DAVIS
camera are rather long, resulting in severe motion blur (see
Fig. 8).

8. Camera CRF Calibration
To combine the event generation model with the RGB in-
tensity frames, both obtained through the same lens with
DAVIS 346C event cameras, we need a precise measurement
of the camera response function (CRF) that we obtain as
follows: First, we place the camera in front of a constant
brightness light source. Then we use the fact that the amount
of captured light is directly proportional to the exposure time.
The DAVIS 346 software allows varying the exposure time

Figure 8. RGB frames recorded by the DAVIS camera are very
blurry, because low-light conditions require longer exposure times.

at µs precision. Thus by varying it, we can record the relative
amount of light needed for the recorded pixel intensity to
reach any value from 0 to 255.

We show the raw measurements in Fig. 9a. The CRF
is obtained by plotting the RGB values over the exposure,
which we show in Fig. 9b. Due to the vignetting of the
lens and view-dependent effects, different pixel locations
respond differently. Because of that, averaging the values
from different pixel locations results in smooth roll-offs at
the extremes of the RGB values, which do not correspond
to the actual sensor properties. The results show that the
measured CRF can be approximated well as a linear function
with a vertical shift of ϵ = 3·10−2 over the y-axis, indicating
that RGB value 0 can be reported even when a non-zero
amount of light reaches the sensor.

9. MLP Architecture and Hyperparameters
We inherit the NeRF MLP architecture used in Event-
NeRF [48], which we also optimise with Adam [18]. How-
ever, we modify the model to use the same shared network
for both fine and coarse levels of prediction rather than using
separate ones. This allows for better optimisation stability
and speed, as only half as many parameters are optimised,
compared to the original version. Due to the small number of
input views in our setting, we modified the code to compose
training batches such that they contain an equal number of
rays from each view. We found this to increase the stability
of the training and the accuracy of the predictions.

Blender Dress Spheres
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
TensoRF-CP [7] 24.727 0.879 0.227 28.091 0.915 0.202 23.971 0.866 0.280
NGP [30] 25.687 0.888 0.184 29.131 0.933 0.179 28.755 0.915 0.120
HexPlane [4] 23.119 0.864 0.275 23.580 0.866 0.336 21.636 0.853 0.334
w/o clipping 19.959 0.851 0.426 27.926 0.926 0.147 28.786 0.916 0.093
w/o Lsparsity 27.501 0.926 0.135 31.292 0.950 0.081 29.358 0.920 0.086
w/o Levent 19.959 0.851 0.426 29.884 0.941 0.108 27.744 0.913 0.114
w/o Lacc 26.835 0.899 0.125 30.650 0.946 0.079 28.847 0.920 0.087
w/o LRGB 27.321 0.928 0.122 30.540 0.946 0.086 29.129 0.920 0.089
only Levent 27.362 0.905 0.148 31.308 0.951 0.073 29.447 0.921 0.084
only Lacc 25.683 0.912 0.159 30.234 0.944 0.106 28.132 0.915 0.107
Full Model 27.431 0.929 0.119 31.396 0.952 0.076 29.765 0.924 0.081

Lego Static Lego Average
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
TensoRF-CP [7] 21.444 0.752 0.408 22.604 0.783 0.310 24.167 0.839 0.285
NGP [30] 17.134 0.594 0.556 15.490 0.552 0.598 23.239 0.777 0.327
HexPlane [4] 20.093 0.711 0.452 20.042 0.725 0.423 21.694 0.804 0.364
w/o clipping 22.996 0.814 0.272 22.687 0.814 0.262 24.471 0.864 0.240
w/o Lsparsity 22.416 0.798 0.281 23.698 0.839 0.203 26.853 0.887 0.157
w/o Levent 21.980 0.792 0.305 22.986 0.821 0.226 24.511 0.864 0.236
w/o Lacc 23.178 0.820 0.247 16.057 0.714 0.483 25.113 0.860 0.204
w/o LRGB 22.332 0.799 0.292 23.644 0.836 0.206 26.593 0.886 0.159
only Levent 23.009 0.814 0.262 16.500 0.729 0.444 25.525 0.864 0.202
only Lacc 22.088 0.794 0.312 22.840 0.819 0.228 25.795 0.877 0.182
Full Model 23.029 0.818 0.258 23.863 0.842 0.193 27.097 0.893 0.145

Table 3. Quantitative ablation and design choice study done with all synthetic scenes. While some ablated models performed better in single
scenes, the averaged metrics clearly favour our full model.

10. Baseline Implementation Details
NGP, TensoRF-CP and HexPlane were reimplemented on
top of our codebase. For NGP, we used a hash grid imple-
mentation in tiny-cuda-nn [29]. For the hash-grid encoding,
we used the following configuration:

"otype": "HashGrid",
"n_levels": 8,
"n_features_per_level": 2,
"log2_hashmap_size": 19,
"base_resolution": 8,
"per_level_scale": 2.0

For the subsequent MLP network, we use two layers with
16 hidden and 10 geometry features. Then for the colour
network, we use three layers with 64 hidden features. In total,
we train the NGP method for 3 · 104 iterations. The resulting
model diverged when training in the sparse-view setting.
To significantly improve its sparse-view performance, we
annealed the cylinder bound radius from 0 to 100% of the full
value in the first 104 iterations. Despite that, its sparse-view
performance is still lacking compared to the full model and
other ablated architectures. TensoRF-CP was reimplemented
from scratch in PyTorch. In addition to the usual three spatial
dimensions, we also decomposed the temporal dimension,
turning it into a spatio-temporal representation. We started
with a 16 × 16 × 16 × 16 grid and gradually progressed
towards a 500× 500× 500× 24 grid in 10 steps throughout

2 · 103 iterations. We set the factorisation rank to 8 as the
highest value that did not cause out-of-memory errors with
our NVIDIA A40 GPU. In total, we train the method for
104 iterations. Similarly, HexPlane was also reimplemented
from scratch. We also used a 500 × 500 × 500 × 24 grid
with a factorisation rank of 8.

11. Dataset Composition

The proposed synthetic dataset consists of
1. Three new original scenes: “Spheres”, “Blender”, “Dress”

(licensed CC-BY4.0), and
2. Two scenes that were based on the data provided in [26]:

“Lego”, “Static Lego”.
The proposed real dataset contains over 18min of simul-

taneous multi-view event and RGB frame streams, recorded
on our six event-camera rig described in Sec. 5.2.

We captured ten subjects. Each of them was instructed
about the recording and signed the release form for the use
of the recorded data in our experiments and subsequent pub-
lic release. The instructions were as follows: “Enter the
recording area. Run around the centre of the area, perform
kicks, punches, jumping jacks, and then whatever fast mo-
tions you like for a total of a minute. Afterwards, take one
of the available objects (towel, ball, bass guitar, paper poster
‘sword’, box, bucket) and perform fast motions for about
another minute.”

1.8 21.5 43.8 63.2 87.0 108.1 129.7 149.1
time (s)

0

31

63

95

127

159

191

223

255

av
er

ag
e

ra
w

rg
b

va
lu

e
(0

-2
55

)

0

10000

20000

30000

40000

50000

ex
po

su
re

 ti
m

e

avg
173, 130
11, 130
avg red
avg green1
avg green2
avg blue
exposure time (us)

(a) Raw recorded RGB values when varying the exposure time of the camera
at different pixel locations and averaged over the colour channels. There is
an outlier on the right of the blue channel average curve, which we ignore
during calibration.

0 10000 20000 30000 40000 50000
exposure time (us)

0

31

63

95

127

159

191

223

255

av
er

ag
e

ra
w

rg
b

va
lu

e
(0

-2
55

)

avg rgb
x=173,y=130
x=11,y=130
fit1
fit2
fit3

(b) Measured CRF and our linear fit. “avg rgb” is the RGB value averaged
over all pixels in the view. Lens vignetting results in the values close to
white (255) being rolled off. To mitigate this issue, we use RGB values of
single pixels instead, labelled as “x = . . . , y = . . .” on the plot. “fit1”,
“fit2”, and “fit3” indicate our respective linear fits to these curves with
ϵ = 3 · 10−2 shift over the y axis (in 0-1 range; corresponds to 7.65 in
0-255 range of the plot).

Figure 9. Event camera RGB intensity frame CRF calibration.

12. Ablation on FPS of Supporting RGB
Frames

We ablate the number of supporting RGB frames used for
training (Fig. 10 and Tab. 5). There is only a minimal dif-
ference in the results if we use only one RGB frame for
reconstruction (0.5 FPS), compared to using 100 FPS RGB
inputs. This indicates that our method does not depend on
the RGB inputs much, using mostly the events. That could
lead to a follow-up work that eliminates the RGB inputs.

Method PSNR↑ SSIM↑ LPIPS↓
Ours (TensoRF-CP [7]) 26.202 0.784 0.164
Ours (NGP [30]) 26.278 0.787 0.163
Ours (HexPlane [4]) 24.941 0.758 0.210
w/o clipping 25.288 0.810 0.163
w/o decay 27.119 0.816 0.133
w/o multi-segment 26.673 0.809 0.142
w/o Lsparsity 26.920 0.814 0.128
w/o Levent 27.620 0.820 0.123
w/o Lacc 25.517 0.802 0.139
w/o LRGB 27.062 0.818 0.120
only Levent 25.029 0.799 0.143
only Lacc 27.754 0.821 0.122
only LRGB 26.019 0.806 0.144
Our Full Model (Final) 27.048 0.819 0.120

Table 4. Quantitative ablation and design choice study on the
“Sword” real scene. SSIM and LPIPS metrics favour our full model.
In particular, omitting event decay (”w/o decay”) makes SSIM and
LPIPS scores worse.

FPS PSNR↑ SSIM↑ LPIPS↓
0.5 26.950 0.817 0.123
1 26.932 0.817 0.123
2 27.055 0.818 0.119
5 27.061 0.820 0.115
10 27.289 0.821 0.117
20 27.226 0.821 0.114
30 27.337 0.821 0.116
50 27.310 0.820 0.117
100 27.328 0.821 0.116

Table 5. Quantitative study on the number of supporting RGB
frames. By default, we use 5 FPS, same frequency as our raw data.
SSIM and LPIPS metrics favour values above or equal 5 FPS, but
do not drop too much with fewer frames, indicating that the model
primarily uses event information and not RGB.

13. Ablations on View Count

When reducing the number of training views, we see that the
model does not diverge even when using only three views
(Fig. 11 and Tab. 6). However, we note that the accuracy
of geometry increases significantly when using more views.
We also used synthetic data to test more possible setups,
up to 36 views. There is clear improvement in PSNR with
the increase in the number of training views as well. This
confirms that our method indeed benefits from additional
improvements to the setup, as stated in the conclusion.

14. Ablation on Design Choices

We provide a detailed ablation study of our design choices
in Tab. 3, listing quantitative results for all our synthetic
scenes individually. Tab. 3 clearly shows that our full model
performs best overall. We also provide a similar table for
one of the real scenes in Tab. 4. SSIM and LPIPS also clearly
favour the full model in that case.

0.5 FPS 1 FPS 5 FPS 10 FPS 50 FPS 100 FPS Ground Truth

Figure 10. Ablation on the number of supporting RGB images used for training. We show novel views from two different times in two rows;
bold indicates the default value. The 0.5 FPS model uses only one set of RGB images. As the number of images increases, there is a slight
reduction in artefacts. However, even with one set of images (0.5 FPS), the results are close to the full model (5 FPS). This indicates that the
method uses primarily event information and does not rely on the RGB images much.

2 views 3 views 4 views 5 views Ground Truth

Figure 11. Ablation on the number of views used for training. We show novel views at two different times in two rows; bold indicates the
default value. With more input views, the quality indeed gets significantly better.

Input Views PSNR↑ SSIM↑ LPIPS↓
2 24.667 0.784 0.166
3 26.081 0.808 0.149
4 26.891 0.815 0.118
5 27.061 0.820 0.115

Table 6. Quantitative study on the number of input views on the
“Sword” real scene. All metrics clearly confirm the improvement
with additional views.

2 v. 3 v. 4 v. 6 v. 12 v. 24 v. 36 v.
16.05 28.97 27.90 30.88 32.19 33.36 33.27

Table 7. PSNR scores on “Dress” with varying number of views.
As stated in the conclusion, our method could easily benefit from
an increase in the number of views or the resolution of the cameras,
which is evident from the results. Bold indicates two best perform-
ing model results.

15. Accumulation Stability

We have observed that accumulating long sequences of
events leads to unstable results. This means that even in
a pixel of constant brightness, spurious “noise” events will
accumulate to ever increasing deviations from the true bright-
ness level. In this section we prove the existence of this phe-
nomenon analytically. We also show that our decay approach
successfully limits this problem to a tolerable bound.

To see that noise events can destroy all information
about the true brightness level, let us consider a pixel of
constant brightness, that nevertheless reports noise events
with polarities pi ∈ {−1,+1}. For the sake of simplic-
ity we assume that the pi are independent and identically
distributed random variables with fixed, but arbitrary prob-
abilities q+ := P(pi = +1) and q− := P(pi = −1). The
accumulated polarity after n such events can then be ex-
pressed as the random variable

En :=

n∑
i=1

pi (13)

2 views 3 views 4 views 6 views

12 views 24 views 36 views Ground Truth

Figure 12. Additional synthetic-data ablation on the number of views used for training. We show novel views at two different times in two
rows; bold indicates the default value. With more input views, the quality gets better, albeit hitting diminishing returns at 24 views.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

−10

0

10

ac
cu
m
u
la
te
d
va
lu
e
(#

ev
en
ts
)

w/o decay

w. decay

1

w/o decay with decay

1Figure 13. Demonstration of accumulation decay (Sec. 4.4), In
a small patch of pixels (marked red on the right), we accumulate
events for each pixel individually and show the resulting signals. A
naive method (red) becomes unstable, as all pixels have completely
different values at the end. In contrast, our proposed method with
decay (blue) is stable: all pixels keep similar values at any time.
Visually, the image with decay (right) has much fewer artefacts too.

which is a simplified version of Eq. (11). The expected
value of En is

E(En)
Def.E
=

n∑
i=1

(+1) ·q++(−1) ·q− = n ·(q+−q−) (14)

If q+ ̸= q−, then lim
n→∞

E(En) = ±∞, i.e. as one accu-
mulates more and more noise, one can safely expect to drift
arbitrarily far away from the true brightness level. But even
when q+ = q−, which would make E(En) = 0 for all n, the
variance of, and therefore the confidence in the accumulated
polarity will decrease with growing n:

V(En)
Def.V
= E((En − E(En))

2)
Binom. thm.

= E(E2
n − 2En · E(En) + E(En)

2)
Additivity E

= E(E2
n)− E(En)

2

Def.En= E

 ∑
1≤i≤n
1≤j≤n

pipj

− E(En)
2

Arithmetic
= E

(∑
i=1

p2i + 2 · ∑
1≤i<j≤n

pipj

)
− E(En)

2

Additivity E
=

∑
i=1

E(p2i) + 2 · ∑
1≤i<j≤n

E(pipj)− E(En)
2

Def.E
= n · (q+ + q−)

+2 · ∑
1≤i<j≤n

q+
2 − 2q+q− + q−

2

−n · (q+ − q−)
Binom. thm.
Arithmetic= 2(q+ − q−)2 ·

n−1∑
i=1

i+ 2nq−

Gauß sum
Arithmetic= n · (n− 1) · (q+ − q−)2 + 2nq−

(15)
This term can exceed any arbitrary bound if one lets n

grow large enough: If q− = 0, then q+ = 1 and V(En) =
n2−n. If q+−q− = 0, then q+ = q− = 1

2 and V(En) = n.
In all other cases we have q− > 0 and (q+ − q−)2 > 0 and
thus also lim

n→∞
V(En) = +∞

This shows that the noise events will drown out all infor-
mation about the actual brightness level, if one just waits
long enough. Since this effect would deteriorate background
pixels (which should not cause any events), but also fore-
ground pixels (where noise is interleaved with legitimate

events), we need to achieve lim
n→∞

V(En) ∈ R and thus intro-
duce decay:

When accumulating polarities, we value older events less
than younger events:

Ên :=

n∑
i=1

pi · bn−i (16)

where the decay strength b := 0.93 was empirically found
to be a useful value.

We now have:

E(Ên)
Additivity E

=
n∑

i=1

E(pi) · bn−i

Def. E
= (q+ − q−) ·

n∑
i=1

bn−i

Arithmetic
= (q+ − q−) ·

n−1∑
i=0

bi

Geometric sum
= (q+ − q−) · bn−1

b−1

(17)

Since lim
n→∞

bn = 0, we have that lim
n→∞

E(Ên) is finite.
In a derivation similar to Eq. (15), we get

V(Ên)

Def.V
Binom. thm.
AdditivityE

= E(Ê2
n)− E(Ên)

2

Def. Ên
Arithmetic
AdditivityE

=
n∑

i=1

E(p2i) · b2(n−i)

+2 · ∑
1≤i<j≤n

E(pipj) · bn−i · bn−j

−E(Ên)
2

Def.E
Binom. thm.
Arithmetic= (q+ + q−) ·

n−1∑
i=0

(b2)i

+2 · (q+ − q−)2 ·
n−1∑
i=0

bi ·
i−1∑
j=0

bj

−E(Ên)
2

Geometric sum
= (q+ + q−) · b2n−1

b2−1

+2 · (q+ − q−)2 ·
n−1∑
i=0

bi · bi−1
b−1

−E(Ên)
2

Arithmetic
= (q+ + q−) · b2n−1

b2−1

+2 · (q+−q−)2

b−1 ·
(

n−1∑
i=0

(b2)i −
n−1∑
i=0

bi
)

−E(Ên)
2

Geometric sum
= (q+ + q−) · b2n−1

b2−1

+2 · (q+−q−)2

b−1 · (b2n−1
b2−1 − bn−1

b−1)

−E(Ên)
2

(18)
All summands in the last term of Eq. (18) converge to a

finite number as n grows larger, so lim
n→∞

V(Ên) ∈ R. This

shows that decay is effectively bounding the deviation from
the true brightness level to a finite error, even for arbitrary
numbers of noise events.

Fig. 13 (right) shows that after applying decay, accumu-
lated events become clear, even though they were unrecognis-
able without decay, proving the effectiveness of our strategy.
Additionally, we take a small patch of that view and plot
the accumulated values with and without decay in Fig. 13
(left): We see that, as predicted analytically, without decay,
the accumulation grows unbounded due to the noise, while
with decay, it remains in a constant range, exactly as the
signal should be.

The smaller one chooses b, the smaller lim
n→∞

V(Ên) be-
comes and the faster it converges. However, since decay af-
fects not only noise events, but also legitimate ones, we have
to explain why it does not distort the actual signal too much.
To see this, consider a single pixel: As long as the foreground
is not moving through this pixel, it shows a constant level
of background brightness. All events it emits are noise, and
can safely be suppressed by decay (because the accumulated
polarity is supposed to be zero). When the foreground enters
the pixel, it will trigger a number of legitimate events. As
long as these are recent, the decay will not suppress them
too much, so Ê is approximately at foreground brightness
level. Assuming that b is chosen suitably, motion is usually
fast enough that the object will leave the pixel again before
decay “undoes” the entry events completely. Leaving the
pixel again triggers a set of legitimate events, that are first
sufficiently recent to not be suppressed by damping. As
they move further into the past, so do the entry events, so Ê
will then correctly approximate the background brightness
level again. Of course decay does still negatively impact the
legitimate events (especially when motion is occasionally
slower than what b was tuned for, such that the foreground
is inside the pixel for longer durations), but the underlying
MLP, supervised by all our losses, can compensate for that
sufficiently. The ablations in Tab. 4 and Fig. 5 show that
SSIM scores, LPIPS and visual results are indeed improved
by our decay technique.

