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Supplementary Material

A. BLUE Theorem
Definition. Let y1, . . . , yn be n i.i.d. data points drawn from a distribution that depends on a parameter θ. A point
estimator θn of θ is a function of the data, i.e., θn = g(y1, . . . , yn). We say that the estimator θn is unbiased if E[θn] = θ,
and consistent if θn → θ in probability as n → ∞.

Theorem. A linear estimator for the event function y(x, t; θ) = φ(x) + tθ is unbiased if the coefficients αi satisfy

n∑
i=1

αi = 0,

n∑
i=1

αiti = 1.

These conditions are necessary if the matrix
[
µ θ

]
∈ Rd×2 has full rank, where µ = E[φ(x)].

Furthermore, the best linear unbiased estimator is given by

αi =
ti − t̄∑n

j=1(tj − t̄)2
, where t̄ =

1

n

n∑
j=1

tj .

It is consistent with convergence rate O

(√
d
n

)
if there exists a constant c > 0 such that

1

n

n∑
i=1

(ti − t̄)2 ≥ c

for sufficiently large n.

Proof. For n events yi, the expected value of a linear estimator for the j-th component is

E

[
n∑

i=1

αiy
(j)
i

]
=

n∑
i=1

αiE[y
(j)
i ] =

n∑
i=1

αiE[φ(j)(xi)] +

n∑
i=1

αitiθ
(j) +

n∑
i=1

αiE[ε
(j)
i ].

Rearranging,

E

[
n∑

i=1

αiy
(j)
i

]
= µ(j)

n∑
i=1

αi + θ(j)
n∑

i=1

αiti.

For unbiasedness, we require

µ(j)
n∑

i=1

αi + θ(j)
n∑

i=1

αiti = θ(j).

Setting a =
∑n

i=1 αi and b =
∑n

i=1 αiti − 1, it reduces to solve[
µ θ

] [a
b

]
= 0 ∈ Rd.

This system has a = 0, b = 0 as solution and is unique if
[
µ θ

]
is full rank, yielding

n∑
i=1

αi = 0,

n∑
i=1

αiti = 1.

On the other hand, using the independence between the variables, the variance for the j-th component is

V ar

( n∑
i=1

αiy
(j)
i

)
=

n∑
i=1

α2
iV ar(y

(j)
i ) =

n∑
i=1

α2
i

(
V ar(φ(j)(xi)) + V ar(ε

(j)
i )

)
.



Assigning cj = V ar(φ(j)(xi)) + V ar(ε
(j)
i ), we obtain

V ar

( n∑
i=1

αiy
(j)
i

)
= cj

n∑
i=1

α2
i .

To minimize the variance under the unbiasedness constraints, we use Lagrange multipliers

L(α1, . . . , αn, λ0, λ1) =

n∑
j=1

α2
j + λ0

n∑
j=1

αj + λ1

 n∑
j=1

αjtj − 1

 .

Setting derivatives to zero
∂L

∂αi
= 2αi + λ0 + λ1ti = 0,

summing over all i, and using the constraints, we derive

λ0 = −λ1t̄, λ1 = − 2∑n
j=1(tj − t̄)2

.

Substituting these into the derivatives gives

αi =
ti − t̄∑n

j=1(tj − t̄)2
.

To analyze consistency, consider

n∑
i=1

α2
i =

∑n
i=1(ti − t̄)2(∑n
j=1(tj − t̄)2

)2 =
1∑n

j=1(tj − t̄)2
.

Applying the given condition
1

n

n∑
i=1

(ti − t̄)2 ≥ c,

we obtain
n∑

i=1

α2
i ≤ c

n
.

By denoting c′ = maxj cj and using Jensen’s inequality we obtain

E

[∥∥∥ n∑
i=1

αiyi − θ
∥∥∥] ≤

√√√√ d∑
j=1

V ar

( n∑
i=1

αiy
(j)
i

)
=

√√√√ n∑
i=1

α2
i

d∑
j=1

cj ≤
√

cc′d

n
.

Thus, the convergence rate is O
(√

d
n

)
.

The consistency condition in the theorem ensures that the variance of the timestamps is not close to zero, preventing events
from being overly concentrated around a specific time. A high concentration at a single point in time results in limited
motion information.


