Best Linear Unbiased Estimation for 2D and 3D Flow with Event-based Cameras

Supplementary Material

A. BLUE Theorem
Definition. Let vy, ..., y, be n i.i.d. data points drawn from a distribution that depends on a parameter 0. A point
estimator 0,, of 0 is a function of the data, i.e., 0, = g(y1,...,Yyn). We say that the estimator 0,, is unbiased if E[0,,] = 6,

and consistent if 8,, — 0 in probability as n — oo.

Theorem. A linear estimator for the event function y(x,t;0) = p(x) + t0 is unbiased if the coefficients «; satisfy
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These conditions are necessary if the matrix [,u 9} € RY2 has full rank, where ;1 = E[p(x)].
Furthermore, the best linear unbiased estimator is given by
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It is consistent with convergence rate O (\/g > if there exists a constant ¢ > 0 such that
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for sufficiently large n.

Proof. For n events y;, the expected value of a linear estimator for the j-th component is
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Rearranging,
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For unbiasedness, we require
lt(j) Z a; + 6 Z ait; = 0,
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Settinga =Y ,a;andb=>"" | a;t; — 1, it reduces to solve
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This system has a = 0,b = 0 as solution and is unique if [ 6] is full rank, yielding
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On the other hand, using the independence between the variables, the variance for the j-th component is
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Assigning ¢; = Var(oW(x;)) + Var(c?)), we obtain
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To minimize the variance under the unbiasedness constraints, we use Lagrange multipliers
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Setting derivatives to zero
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summing over all ¢, and using the constraints, we derive
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Substituting these into the derivatives gives ~
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To analyze consistency, consider
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Applying the given condition
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By denoting ¢’ = max; ¢; and using Jensen’s inequality we obtain
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Thus, the convergence rate is O < d).
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The consistency condition in the theorem ensures that the variance of the timestamps is not close to zero, preventing events

from being overly concentrated around a specific time. A high concentration at a single point in time results in limited

motion information.



