BiasBench: A reproducible benchmark for tuning the biases of event cameras

Supplementary Material

7. Access to the Dataset

The dataset, the presented metrics as well as some ad-
ditional information is accessible on our project web-
site: https://cogsys—tuebingen.github.io/
biasbench/

8. Datasets

Here, we provide some additional information about the
three setups of our dataset. The spinning dot in Sec. 8.1,
the blinking LED board in Sec. 8.2, and the Visual Odome-
try (VO) in Sec. 8.3.

8.1. Spinning Dot

The setup of the spinning dot is shown in Fig. 11. A selec-

Figure 11. The setup of how we recorded the spinning dot con-
sists of an EVKv4 event-based camera from Prophesee with a res-
olution of 1280 x 720 pixels and a white disk with a grey dot
connected to a motor. The distance between the motor and the
spinning disk is 40 centimeters.

tion of screen captures from the recordings of the grey dot
with their bias settings is visualized in Fig. 12. And for the
black dot with their bias settings in Fig. 13.

8.2. Blinking LED Board

A blinking LED board, shown in Fig. 14, was specifically
designed as an evaluation tool for event cameras in a sci-
entific study. Its purpose is to enable the simultaneous ob-
servation of varying frequencies and luminosity gradients,
offering a robust testing environment for evaluating event
camera performance under diverse conditions.

The board consists of a total of 16 LEDs, categorized as
follows:

* High-Frequency Blinking LEDs (4 LEDs): These
LEDs blink at high frequencies that are not perceivable
by the human eye (>50 Hz). They are particularly sen-
sitive to the bias_hpf bias setting, as higher cutoff fre-
quencies in the high-pass filter will predominantly retain
events from these high-frequency LEDs while filtering
out lower-frequency signals.

¢ Sinusoidal Luminosity LEDs (6 LEDs): These LEDs
modulate their brightness following a sinusoidal wave at
different frequencies. The smooth, continuous change in
luminosity creates a distinct time gradient in the events
generated by the camera.

¢ Triangular Wave Luminosity LEDs (6 LEDs): These
LEDs also change their brightness at the same set of fre-
quencies as the sinusoidal LEDs, but with a triangular
wave pattern. The sharper transitions of the triangular
wave offer a different type of temporal gradient for eval-
uation.

The difference in frequencies across the sinusoidal and
triangular LEDs results in varying temporal gradients, al-
lowing for a nuanced assessment of how the event camera
responds to different rates of change in light intensity.

The board’s design also allows for testing bias tuning al-
gorithms:

* Adjusting the bias_diff-on and bias_diff_off parameters
can suppress the events generated by low-frequency
LEDs, effectively isolating high-frequency activity.

* The bias_fo setting provides additional filtering by attenu-
ating signals from lower frequency LEDs, enabling more
precise control over the frequency response of the camera.

The LED board is controlled by a microcontroller, al-
lowing easy adjustment of LED frequencies. While Pulse
Width Modulation (PWM) is commonly used for LED in-
tensity control, the event camera would detect the rapid on-
off transitions. To avoid this, capacitors were added in par-
allel to the sinusoidal and triangular LEDs, acting as inte-
grators to smooth the PWM signal into a continuous ana-
log waveform. This ensures gradual brightness changes and
prevents unwanted high-frequency noise.

We recorded 30, 976 sequences, covering the following
biases:

* bias_diff-on: -80, -60, -40, -20, 0, 20, 40, 60, 80, 100, 120
* bias_diff-off: -30,-10, 10, 30, 50, 70, 90, 110, 130, 150,

170
* refr_time: 4, 20, 36, 52, 68, 84, 100, 116
e refr_fo: -29, -18, -7, 4, 15, 26, 37, 48
* refr_hpf: -15, 65, 145, 225

Figure 15 shows the average ER over the whole dataset
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Figure 12. A selection of screen captures of Metavision Studio from 100 recordings of a grey dot with their bias settings, where off refers

to bias_diff_off and on refers to bias_diff_on.

(a) off = -35 and on = -35

(b) off =40 and on = -35

(f) off = 190 and on = 40

(g) off =-35and on = 115
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Figure 13. A selection of screen captures of Metavision Studio from 100 recordings of a black dot with their bias settings, where off refers

to bias_diff-off and on refers to bias_diff_on.

for each bias setting. The bias combinations with the lowest
value for one of the two thresholds contain around 50% of
the total event count. Additionally, a very high high-pass
filter can be used to get rid of many events. A decrease in
the refactory period also decreases the average event rate as
displayed in Figure 16.

The slow-blinking LEDs start to vanish for high bais
thresholds. Resulting in an increased RFU in these regions.
This can be seen in Fig. 17. The increase of noise in low

bias setting also hinders the frequency detection, therefore,
an optimal around bias_diff off = —20, bias_diff_on = 20
results in the highest average RFU. A strong high-pass filter
in combination with a strong low-pass filter also decreases
the sensitivity for the detection of some LEDs, therefore,
the RFU also increases in these regions significantly.



Figure 14. A blinking LED board consisting of LEDs with differ-
ent frequencies and waveforms.
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Figure 15. The average event Rate for different bais combinations.
bias_diff off vs bias_diff-on on the left side, bias_hpf vs bioas_fo
on the right side. The lowest threshold bins contain roughly 50%
of all events produced.

Figure 16. The average event Rate for different refactory periods.

8.3. Visual Odometry (VO)

To get a repeatable motion and an accurate ground truth tra-
jectory, we mounted an event camera to the end-effector of
a Pandas robot arm, shown in Fig. 18, to move the event
camera along the same trajectory with different biases. The
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Figure 17. The average RFU for different bias combinations
bias_diff off vs bias_diff-on on the left side, bias_hpf vs bias_fo
on the right side. The most efficient frequency estimation can
be achieved with a bias_diff-off = —10, bias_diff-on = 20 and
bias_hpf = 0.

Figure 18. The setup to record the VO dataset.

scene was a static environment under constant illumination.

9. Baseline

The overall pipeline used for this learning process is illus-
trated in Fig. 19.
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Figure 19. An overview of the Behavioral Cloning (BC) pipeline.
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In order to rate the output of the event camera, the pri-
mary metric we chose was whether the dot on an accumu-
lated event frame is visible to the human eye or not. This
is the first and foremost concern because if the dot is not
visible, it defeats the entire point of the recording. The sec-
ondary metric that we chose is the ER, which should be as
low as possible while keeping the signal strong. This trans-
lates to low background noise. We define an optimum bias
setting as any setting that fulfills the two conditions.

The average ER was calculated for each recording by
dividing the total amount of events by the length of the
recording. The ER is used to measure the amount of sig-
nal and noise and to try to find a bias setting with a good
ratio between the two. As can be observed in Fig. 20 and
in Fig. 21, for recordings where either of the two biases has
a small value, the ER is larger, by order of magnitude, com-
pared to the recordings where the biases had higher values.
The recordings with the bias_diff-on values between —85
and —60 contain errors because the readout bus of the event
camera did not have enough bandwidth to transmit all the
events. This means that the ER is bigger than the maximum
allowed one.

The most noticeable difference between the heatmap of
the ER for the grey dot in Fig. 20 and the one for the black
dot in Fig. 21 is that the average ER is higher for the black
one. This is expected, as the contrast between the black dot
and the white background is higher than for the grey dot.

To find the range of the optimal biases, we also look at
the accumulated event frames. An accumulation period of
8 ms has been chosen so that the entire body of the dot
can be seen. The first thing noticeable is that for high val-
ues of bias_diff_off, the dot is no longer visible, as seen in
Fig. 12. The camera has such a low sensitivity for those set-
tings that the contrast between the dot and the background
is no longer enough to produce any events. As we observed
from the ER, for too small values of both biases, especially

if they are negative, the noise severely affects the quality of
the recording, even if the dot is visible.

For the grey dot, an optimal bias, as we defined it, is
bias_diff_off = 40 and bias_diff-on = 40. For this set-
ting, the dot is visible, and the noise is greatly reduced. We
have considered that for the setting bias_diff-off = 40 and
bias_diff-on = 115, the signal was too reduced for it to be
considered an optimal bias, even though the dot is visible
to the human eye. The observations made from viewing the
recordings helped us conclude that optimal biases can be
found in the range [15, 65] for bias_diff-off and in the range
[40, 90] for bias_ diff-on.

For the black dot, we can observe that the dot is visible
even for the maximum values of the thresholds, while the
grey one disappears. Because of this, the range of the opti-
mal biases is larger than for the grey dot, being [40, 165] for
bias_diff-off and [40, 115] for bias_diff-on.

Heatmap showing the Event Rate in relation to bias choice
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Figure 20. A heatmap showing the Event Rate (ER) for different
bias choices of the spinning grey dot recording.

We have chosen to define the action in this environment
as the relative bias change, expressed with an integer to be
added to the current bias value, as this is the way we went
about tuning the biases by looking at the output and ap-
proximating how big of a change is necessary. Thus, we
have written demonstrations consisting of a tuple of actions
with the form (a, b, 0,0, 0), where a represents the change
of bias_diff off and b represents the change of bias_diff on
that is needed to reach the range of optimal biases.

Different Feature Extractors As an ablation study for
the feature extraction, we have adapted two models of
ResNet: ResNetl18, with 18 layers, and ResNet50, with 50
layers, a more complex network, capable of capturing more
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Figure 21. A heatmap showing the Event Rate (ER) for different
bias choices of the spinning black dot recording.

information. The choice of the network has an influence on
the ability of the network to learn.

ResNet50 is a more complex and deep network com-
pared to ResNet18, and therefore, the BC model is able to
finish the learning process in 1000 steps. Due to its more
complex structure, ResNet50 creates a more information-
dense latent space. The downside of this is a more compu-
tationally expensive training process for the model, which
was already done on ImageNet and is of no concern for this
work. The exact loss values after the training process fin-
ished are listed in Tab. 6.

As evident from the training and test loss in Tab. 6,
ResNet50 is the better option for our purposes, and there-
fore, we decided to use ResNet50 as our feature extractor.

Model Test loss

ResNetl8 0.24
ResNet50 0.2

Table 6. The final loss values when the training process is finished.
The loss is displayed as the Mean Squared Error of the normalized
proposed action.

Different Accumulation Times As described in Sec. 4.1,
we are using accumulated event frames to extract features
from the event stream. In an additional ablation study, we
investigated the influence of the accumulation time. De-
pending on the application, the duration of the accumulation
time can have a significant influence on the performance.

Therefore, we investigated the influence of different accu-
mulation times (1 ms, 2 ms, 8 ms, and 16 ms).

Accumulation Time Test loss
lms 0.2
2ms 0.22
8ms 0.21
16 ms 0.27

Table 7. The final loss values with different accumulation times
after the training process finished. The loss is given in the mean
squared Error of the normalized proposed action.

(a) off =-10 and on = -35 (b) off =40 and on =40

Figure 22. Demonstration of the model proposing a bias change
from (a) to (b) that allows the object tracking algorithm to accu-
rately track the dot and not see any other objects caused by noise.

From the final test losses in Tab. 7, we can see that for
our data, a shorter accumulation time is favorable.



