
GPT-FL: Generative Pre-trained Model-Assisted Federated Learning

Tuo Zhang1,→, Tiantian Feng1,→, Samiul Alam2,
Dimitrios Dimitriadis3, Sunwoo Lee4,

Mi Zhang2, Shrikanth S. Narayanan1, Salman Avestimehr1
1University of Southern California, 2The Ohio State University, 3Amazon, 4Inha University

tuozhang@usc.edu *

Abstract

In this work, we propose GPT-FL, a generative pre-trained
model-assisted federated learning (FL) framework. At its
core, GPT-FL leverages generative pre-trained models to
generate diversified synthetic data. These generated data
are used to train a downstream model on the server, which
is then fine-tuned with private client data under the stan-
dard FL framework. We show that GPT-FL consistently
outperforms state-of-the-art FL methods in terms of model
test accuracy, communication efficiency, and client sam-
pling efficiency. Through comprehensive ablation analysis,
we discover that the downstream model generated by syn-
thetic data plays a crucial role in controlling the direction
of gradient diversity during FL training, which enhances
convergence speed and contributes to the notable accuracy
boost observed with GPT-FL. Also, regardless of whether
the target data falls within or outside the domain of the pre-
trained generative model, GPT-FL consistently achieves
significant performance gains, surpassing the results ob-
tained by models trained solely with FL or synthetic data.

1. Introduction

Federated learning (FL) is a privacy-preserving machine
learning paradigm that allows clients to collaboratively train
a machine learning model without sharing their private
data [44]. Most existing FL studies such as [4, 25] fol-
low the standard FL architecture, where each participating
client trains a local model using its own private data and
a central server aggregates these locally trained models to
update a global model and send it back to the clients for
the next round of training. However, although many efforts
have been made [16, 30, 32], the performance of standard
FL is still constrained by client drift caused by the hetero-
geneity in private data distribution across the clients.

*→Equal contribution

To enhance the performance of FL, recent studies pro-
pose to incorporate data collected from public spaces such
as the internet into the FL process [7, 15, 21, 22]. How-
ever, the performance of such public data-based approaches
is heavily dependent on the quality of the collected public
data. Unfortunately, obtaining the desired public data can
be extremely challenging in practice and there is a lack of
principled guidance on how to obtain them. To address the
issues of public data-based approaches, FL methods based
on synthetic data emerge [28, 41, 43, 46]. In [43, 46], a
generative model is trained through knowledge distillation
(KD) and the synthetic data are generated from the gener-
ative model in an interleaved manner throughout the fed-
erated training iterations. Unfortunately, these approaches
are confronted with two limitations: (1) since the training
of the generative model and the federated training process
interleave, the quality of the synthetic data generated by the
generative model before it converges can be extremely un-
stable. Such low-quality synthetic data would in turn jeop-
ardize the federated training process; (2) given that KD re-
quires clients to report model weights as teachers to transfer
knowledge, they are incompatible with secure aggregation
protocols [3, 36], which limits their privacy guarantee com-
pared to standard FL.

In this work, we propose GPT-FL, a generative pre-
trained model-assisted FL framework that effectively ad-
dresses the issues of existing methods. The key idea be-
hind GPT-FL is to leverage the knowledge from the gen-
erative pre-trained models and to decouple synthetic data
generation from the federated training process. Specifically,
GPT-FL prompts the generative pre-trained models to gen-
erate diversified synthetic data. These generated data are
used to train a downstream model on the server in the cen-
tralized manner, which is then fine-tuned with the private
client data under the standard FL framework. By doing this,
the proposed GPT-FL is able to combine the advantages of
previous methods while addressing their limitations.

The proposed GPT-FL exhibits multifold merits com-
pared to prior arts (Table 1): (1) In contrast to public data-
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Table 1. Comparison of GPT-FL with existing FL methods.

External Data
Limited to

Smaller
Client Model

Generate
Data

during FL

Data
Generator
Location

Client Access to
Public/Generated

Data

Support
Data

Modality

Compatibility
with Secure
Aggregation

FedAvg [25]

No No N/A N/A N/A Any YesFedOpt [30]
FedProx [32]
SCAFFOLD [16]

FedDF [22]
Public Data No N/A N/A

Not Required Any
NoDS-FL [15] Required Any

Fed-ET [7] Not Required Any

FedGen [46]

Generated Data Yes Yes
Client Required Only Image No

FedFTG [43] Server Not Required Only Image No
DynaFed [28] Server Not Required Only Image Yes
GPT-FL (Ours) No No Server Not Required Any Yes

based FL methods, GPT-FL gets rid of the dependency on
the availability of the desired public data, offering much
more flexibility in its applications. (2) Compared to other
generative data-based approaches, the leverage of genera-
tive pre-trained models and the decoupling between syn-
thetic data generation from the federated training process
make the generated synthetic data in GPT-FL not impacted
by private data distribution on the clients and the structure
of the model to be trained. (3) By leveraging the compu-
tational resources on the server, GPT-FL provides a much
more efficient way to utilize external data by incorporating
them into the pre-training of the downstream model, which
significantly reduces the communication and computation
costs of FL. (4) The generation of downstream models using
synthetic data takes place on the server. As such, it thereby
eliminates the need for clients to bear any additional com-
putational burden. (5) Lastly, as GPT-FL does not alter the
standard FL framework, it is fully compatible with secure
aggregation protocols as in standard FL methods. More im-
portantly, GPT-FL does not introduce any additional hyper-
parameters beyond the standard FL framework. This signif-
icantly simplifies the hyper-parameter optimization process,
making GPT-FL much more practically useful.

We evaluate the performance of GPT-FL by compar-
ing it against state-of-the-art FL methods under three cat-
egories: standard FL methods, public data-based meth-
ods, and generated data-based methods on five datasets that
cover both image and audio data modalities. We highlight
five of our findings: (1) GPT-FL consistently outperforms
state-of-the-art FL methods under both low and high data
heterogeneity scenarios with significant advantages in com-
munication and client sampling efficiency. (2) Under a zero-
shot setting, i.e. no real-world data is available, the down-
stream model after centralized training with synthetic im-
ages as part of GPT-FL achieves higher performance com-
pared to the global model based on standard FL training

with private data. On the contrary, the centralized training
with synthetic audio performs worse than FL setups due to
the impact of data modality and the quality of the gener-
ative pre-trained models. (3) GPT-FL does not fully rely
on generated data. Regardless of whether the target data
falls within or outside the domain of the pre-trained gen-
erative model, GPT-FL can largely improve model perfor-
mance beyond relying solely on private data in a standard
FL framework. (4) The downstream model generated by
synthetic data controls gradient diversity during FL training,
improving convergence speed and leading to significant ac-
curacy gains with GPT-FL. (5) GPT-FL effectively lever-
ages existing pre-trained downstream models to improve
performance in the FL setting, similar to methods under the
standard FL framework.

2. Related Work
FL with Public Data. To further mitigate client drift, re-
cent studies propose to utilize public data (e.g., collected
from the internet) in the process of federated training. For
example, FedDF [22] leverages public data at the server
to aggregate client models through knowledge distillation
(KD). DS-FL [15] proposes a similar approach based on
semi-supervised FL. Fed-ET [7] introduces a weight con-
sensus distillation scheme using public data to train a large
server model with smaller client models. However, utilizing
public data for FL has several limitations: the performance
of FL heavily relies on the selected public data. However,
it is unclear to which extent should the publish data be re-
lated to the training data to guarantee effective knowledge
distillation, making it challenging to find appropriate public
data for every use case [1, 37, 43]. Moreover, the involve-
ment of KD requires clients to send model weights to the
server. This requirement makes it incompatible with secure
aggregation protocols, making them vulnerable to backdoor
attacks [39]. Furthermore, some proposed methods [21, 22]
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Figure 1. System overview of GPT-FL.

require clients to process the public data. Such requirement
adds an extra computational burden to clients.
FL with Synthetic Data. To address the issues of public
data-based approaches, FL methods based on synthetic data
have been proposed [28, 41, 43, 46]. In particular, Fed-
Gen [46] proposes to train a lightweight generator on the
server using an ensemble of local models in a data-free man-
ner. The generator is then sent to the clients to regularize
local training. FedFTG [43] trains a GAN-based genera-
tor where the global model acts as the discriminator. The
generated data are then used to fine-tune the global model
on the server after model aggregation. However, training
of the generator relies heavily on the global model, which
can lead to poor performance under high data heterogene-
ity. Additionally, the quality of training the generator is im-
pacted by the structure of the global model [17], making
the quality of the synthetic data unstable during training.
Furthermore, these approaches are limited to image-related
tasks, restricting their applicability to other data modali-
ties. Specifically, both FedGen and FedFTG rely on training
MLP-based or GAN-based lightweight generator networks
to ensemble user information in a data-free manner, where
the lightweight generator may have limitations in generat-
ing high-fidelity data. In addition, the MLP-based model
is impractical to model temporal structures to signals such
as audio and speech. Finally, some approaches [43, 46]
could not support secure aggregation protocols due to the
KD-based training, which could compromise the privacy of
client data. As an alternative, DynaFed [28] proposes to

generate synthetic data via gradient inversion by applying
multi-step parameter matching on global model trajectories
and using the synthesized data to help aggregate the de-
flected clients into the global model. However, using gradi-
ent inversion for generating synthetic data could encounter
limitations when dealing with high-resolution images [14].
In addition, this approach could not be directly used for
other data modalities such as audio [9]. In this work, we
propose GPT-FL as a solution to address these limitations.

3. GPT-FL: Generative Pre-trained Model-
Assisted Federated Learning

The overall architecture of GPT-FL is illustrated in Fig-
ure 1. As shown, GPT-FL consists of four steps. First,
prompts are created based on the label names at the server.
These prompts are then utilized to guide the generative pre-
trained models to generate synthetic data. The server uses
these generated synthetic data to train a downstream model
and distributes the trained model to the clients. Lastly, the
clients use the trained model as the starting point, and fine-
tune the model with their private data under the standard FL
framework until it converges. In the following, we describe
the details in each step.

3.1. Create Prompts based on Label Names
As the first step of GPT-FL, a prompt that describes the
desired content of the data is required to guide the syn-
thetic data generation process. To do so, GPT-FL requires
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the clients to provide the set of label names1 of their pri-
vate local data to generate prompts. However, prior re-
search [13, 34] shows that using only label names to gen-
erate prompts could restrict the quality and diversity of the
generated synthetic data. Moreover, in FL, the server does
not have access to detailed descriptions of the private data.
To address these issues, GPT-FL incorporates large lan-
guage models (LLMs) such as GPT-3 to expand each input
class’s details and use them as prompts for synthetic data
generation. As an example, for the label name ”airplane”,
GPT-FL uses the following query for the LLM to generate
the prompt as follows:

Q: " _ _ _ _ airplane _ _ _ _"
Please fill in the blank and
make it as a prompt to
generate the image

A: Large commercial airplane in
the blue sky.

Moreover, inspired by [34], we randomly set the uncon-
ditional guidance scale of the Stable Diffusion model be-
tween 1 and 5 to further enrich the data diversity. In ad-
dition to the aforementioned techniques, it is worth noting
that GPT-FL is flexible and compatible with other prompt
engineering techniques that can be used to generate diversi-
fied synthetic data.

It should be noted that GPT-FL can employ Invertible
Bloom Lookup Tables (IBLT) to encode label names be-
fore sending them to the server so that the label informa-
tion of each client is not leaked to the server [10]. Specifi-
cally, each client locally encodes its unique label names into
IBLT, a probabilistic data structure that can encode items in
an open domain efficiently. The server linearly aggregates
these IBLTs via the secure aggregation [5] and decodes the
aggregated table for the union of unique label names with-
out revealing individual label information. More details
about IBLT in GPT-FL are provided in Appendix 6 via an
illustrative experiment.

3.2. Generate Synthetic Data from Generative Pre-
trained Model

Next, the generated prompts are used as the inputs to the
generative pre-trained models to generate synthetic data. In
this work, we utilize the state-of-the-art Latent Diffusion
Model [31] loaded with Stable Diffusion V2.1 weights to
generate synthetic images for image-based FL applications;
and we utilize the state-of-the-art SpeechT5 model [2] for
text-to-speech and AudioLDM model [23] for text-to-audio
to generate synthetic speech and audio data, respectively.
It should be noted that the proposed GPT-FL is a general

1To protect user data privacy in FL setting, GPT-FL only requests the
set of distinct label names instead of detailed label name distributions, and
generates a uniform number of prompts for each label name.

framework that supports other generative pre-trained mod-
els and data modalities beyond images and audio.
3.3. Train Downstream Model on Generated Syn-

thetic Data
With the generated synthetic data, GPT-FL trains a down-
stream model on the server in a centralized manner, and
distributes the trained model to the clients participated in
FL. This trained model acts as the initialized model for the
following federated training process. One note should be
emphasized from our empirical experiences is that train-
ing with synthetic data is prone to overfitting, as syn-
thetic data tend to be highly patternized compared to real
data. To mitigate the effects of overfitting, we adopt rela-
tively large weight decay hyperparameters and small learn-
ing rates compared to training with real data. The detailed
hyper-parameter selections are listed in Appendix 6.

3.4. Finetune Trained Downstream Model on Pri-
vate Client Data with FL

Lastly, the clients use the trained model distributed from
the server as the starting point, and finetune the model with
their private data under the standard FL framework until the
finetuning converges. As such, GPT-FL does not alter the
standard FL framework, making it fully compatible with
secure aggregation protocols as in standard FL methods.
More importantly, unlike existing generated data-based ap-
proaches [28, 43, 46], GPT-FL does not introduce any ad-
ditional hyper-parameters beyond the standard FL frame-
work. This significantly simplifies the hyper-parameter op-
timization process, making GPT-FL much more practically
useful.

4. Experiments
Datasets, Models, and Tasks. We evaluate the perfor-
mance of GPT-FL on five datasets from three FL ap-
plications: image classification, speech keyword spotting,
and environmental sound classification. For image classi-
fication, we conduct experiments on CIFAR-10, CIFAR-
100 [18], and Oxford 102 Flower [27] using ConvNet [28],
ResNet18, ResNet50 [12], and VGG19 [35]. Among them,
CIFAR-10 and CIFAR-100 contain images from diverse ob-
jects whereas Oxford 102 Flower only contains images of
flowers but with higher resolutions for fine-grained classifi-
cation. For audio-related tasks, we choose the Google Com-
mand speech dataset [40] for keyword spotting and ESC-50
dataset [29] for environmental sound classification. We fol-
lowed the previous work [45] to use the same model for
these two datasets.

Data Heterogeneity. For CIFAR-10 and CIFAR-100,
the training dataset is partitioned heterogeneously amongst
100 clients using the Dirichlet distribution DirK(ω) with ω
equal to 0.1 and 0.5 following the previous work [7]. With
the same method, we partition Flowers102 into 50 subsets
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Table 2. Model accuracy comparison between GPT-FL and existing FL methods. For public data-based methods MOON, FedDF, DS-FL
and Fed-ET, the results on CIFAR-10 and CIFAR-100 are obtained from [7], and the results on Flowers102 are marked as N/A given the
practical challenge on finding a set of suitable public data that can boost its performance.

Method Training
Model

High Data Heterogeneity (ω = 0.1) Low Data Heterogeneity (ω = 0.5)

CIFAR-10 CIFAR-100 Flowers102 CIFAR-10 CIFAR-100 Flowers102
FedAvg

VGG19
71.19 (± 0.27) 30.21 (± 0.32) 30.30 (± 0.16) 74.82 (± 0.23) 33.12 (± 0.13) 34.75 (± 0.90)

FedProx 72.45 (± 0.13) 31.51 (± 0.11) 33.23 (± 0.24) 75.24 (± 0.19) 33.64 (± 0.08) 40.56 (± 0.19)
SCAFFOLD 75.12 (± 0.20) 30.61 (± 0.57) 26.75 (± 0.50) 78.69 (± 0.15) 34.91 (± 0.61) 33.21 (± 0.41)

MOON

VGG19

75.68 (± 0.51) 33.72 (± 0.89) N/A 81.17 (± 0.41) 42.15 (± 0.72) N/A
FedDF 73.81 (± 0.42) 31.87 (± 0.46) N/A 76.55 (± 0.32) 37.87 (± 0.31) N/A
DS-FL 65.27 (± 0.53) 29.12 (± 0.51) N/A 68.44 (± 0.47) 33.56 (± 0.55) N/A
Fed-ET 78.66 (± 0.31) 35.78 (± 0.45) N/A 81.13 (± 0.28) 41.58 (± 0.36) N/A

FedGen ConvNet 2 42.05 (± 0.93) 26.64 (± 0.66) Not Converged 54.86 (± 0.13) 34.03 (± 0.42) Not Converged
DynaFed 71.59 (± 0.10) 36.08 (± 0.15) Not Converged 75.66 (± 0.21) 43.82 (± 0.30) Not Converged

GPT-FL VGG19 82.16 (± 0.13) 47.80 (± 0.32) 70.56 (± 0.34) 82.17 (± 0.20) 48.39 (± 0.17) 74.84 (± 0.43)
ConvNet 72.62 (± 0.24) 42.66 (± 0.19) 37.91 (± 0.43) 77.18 (± 0.21) 47.89 (± 0.28) 48.61 (± 0.51)

due to its relatively small size. For audio datasets, Google
Speech Command is partitioned over speaker IDs, making
the dataset naturally non-IID distributed. It contains a total
of 105,829 audio recordings collected from 2,618 speakers.
The training set includes the recordings from 2,112 speakers
and the test set includes the rest. To create non-IID data dis-
tributions on ESC-50, we followed the previous work [45]
to partition ESC-50 into 100 subsets using DirK(ω) with ω
equal to 0.1.

Baselines and Evaluation Metrics. We compare
GPT-FL against three categories of baselines: 1) standard
FL methods without the use of public or generated synthetic
data – FedAvg, FedProx, and Scaffold; 2) FL methods that
involve the use of public data – MOON, FedDF, DS-FL,
and Fed-ET; and 3) FL methods that utilize generated syn-
thetic data – FedGen and DynaFed3. We use the test ac-
curacy of the trained model as our evaluation metric. We
run experiments with three different random seeds and re-
port the average and standard deviation. The details of the
hyper-parameter selection of each dataset and experiment
are described in Appendix.
4.1. Performance Comparison with State-of-the-

Art FL Methods
First, we compare the performance of GPT-FL with state-
of-the-art FL methods. To enforce fair comparisons, in
this experiment, we choose to evaluate on the three image
datasets (CIFAR-10, CIFAR-100 and Flowers102) since
baseline methods MOON, FedGen and DynaFed only sup-
port image data. Moreover, we used the same models
(VGG19 and ConvNet) and experiment settings as previous
work [7, 28]. In each communication round, we randomly
sample 10 clients from 100 clients for CIFAR and use all 50
clients for Flowers102. We choose FedAvg as the FL opti-
mizer. All the training starts from random initialization and

3We did not compare with FedFTG because its code is not open-source,
and we could not reproduce their results following the paper.

total number of communication rounds is set to 500.
Overall Performance. Table 2 summarizes our results.

We make three key observations: (1) GPT-FL consistently
outperforms all the baselines we selected in Table 2 un-
der both low and high data heterogeneity scenarios across
all three datasets. (2) In direct comparison with state-of-
the-art generated data-based FL methods, although Fed-
Gen and DynaFed perform reasonably well on CIFAR-
10 and CIFAR-100, they do not converge on Flowers102
whose images have higher resolutions than CIFAR. More-
over, both FedGen and DynaFed fail to converge when
training a larger VGG19 model on Flowers102 and even
lower-resolution CIFAR-10/100. In contrast, GPT-FL not
only converges but also achieves state-of-the-art accuracy
on Flowers102. More importantly, GPT-FL is able to sup-
port larger model, and its accuracy is significantly higher
than the smaller ConvNet. (3) For Flowers102, as both
public data-based and generated data-based FL methods are
confronted with challenges, the only viable options are stan-
dard FL methods and GPT-FL. As shown, with the same
model, GPT-FL outperforms standard FL methods by a sig-
nificant margin.

Communication Efficiency. Besides model accuracy,
we also compare the communication costs of GPT-FL with
existing FL methods on CIFAR-10/100 under high data
heterogeneity, where communication cost is measured as
the total number of model parameters communicated be-
tween the server and clients during federated training un-
til reaching a target model test accuracy. Specifically,
Figure 2 shows the communication cost comparison be-
tween standard FL methods, public data-based methods4,
and GPT-FL under VGG19; and Figure 3 shows the com-
munication cost comparison between generative data-based
methods and GPT-FL under ConvNet. The target test ac-

4We do not compare with FedDF and DS-FL as they do not achieve
competitive model accuracy.
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Figure 2. Communication costs of stan-
dard FL methods, public data-based meth-
ods and GPT-FL to achieve the target ac-
curacy.

Figure 3. Communication costs of gener-
ated data-based methods and GPT-FL to
achieve the target test accuracy.

Figure 4. Test accuracy of GPT-FL for
CIFAR-10/100 under different client sam-
pling rates.

curacies in Figure 3 are set to be lower given the low ac-
curacies achieved by FedGen. As shown, GPT-FL has the
least communication cost among all the methods, achiev-
ing up to 94% communication reduction compared to the
best-performed public data-based baseline Fed-ET and 98%
communication reduction compared to the best-performed
generated data-based baseline DynaFed. These results high-
light the significant advantage of GPT-FL in communica-
tion reduction over state-of-the-art FL methods.

Client Sampling Efficiency. One critical hyper-
parameter of FL is the client sampling rate in each com-
munication round during the federated training process. In
Figure 4, we plot the test model accuracies obtained by
GPT-FL under low, medium, and high client sampling rates
on CIFAR-10/100 with VGG19 under high data heterogene-
ity. As shown, even with a single participating client per
round, GPT-FL is able to achieve 80.44% and 43.07% test
accuracy on CIFAR-10 and CIFAR-100 respectively. This
performance already surpasses all the other FL methods
listed in Table 2, which employs 9 times more clients for
training per round. These results highlight the significant
advantage of GPT-FL in client sampling efficiency over
state-of-the-art FL methods, making GPT-FL a very at-
tractive solution in challenging scenarios where not many
clients can participate at the same time.

4.2. Understanding GPT-FL
(1) Can we only rely on centralized training with syn-
thetic data to achieve competitive results compared to
Federated Learning with private data?

To answer this question, we compare the model perfor-
mance between generated downstream model by central-
ized training with synthetic data and the global model by
standard FL training with private data on both image and
audio benchmark datasets. Different from the previous sec-
tion, we select ResNet18 and ResNet50 models for CIFAR-
10 and CIFAR-100 dataset, respectively. We choose the
models proposed in the FedAudio Benchmark [45] for au-
dio tasks. We report the best F1 score for the audio datasets.

The results are summarized in Table 3.
Impact of Out-of-Domain Data Generation. We

choose the ESC-50 and Google Speech Commands datasets
to examine the impact of out-of-domain data generation for
the generative pre-trained model. We did not conduct a sim-
ilar analysis for the image datasets as the LAION-5B [33]
open-source dataset for training the Stable Diffusion model
we used is a vast collection of publicly available datasets,
including nearly all relevant ones for our experiments.

Our experiments show that synthetic image outperforms
synthetic audio regarding model performance when using
centralized training. We observed that centralized train-
ing with synthetic images achieves higher accuracy than
FL setups for all three image benchmark datasets. In con-
trast, centralized training with synthetic audio performs
worse than FL setups for ESC-50 and Google Speech Com-
mand datasets. The finding from the Google Speech Com-
mand experiments aligns with the previous study [20] that
utilizes pure synthetic speech data to train the automatic
speech recognition system leading to substantial perfor-
mance degradation. One plausible explanation is related to
the relatively small training data sizes (approximately 400M
sentences) and constrained domain knowledge (book cor-
pus) compared to training other generative pre-trained mod-
els like Stable Diffusion. For example, using human inspec-
tion, we discovered that the TTS model fails to synthesize
simple spoken words like ”house”. This deficiency may
originate from the lack of short-spoken utterance samples
in training data. In addition, the synthesized speech often
lacks diversity due to the limited range of speakers repre-
sented in the training dataset. On the other hand, there is in-
sufficient knowledge of the audio generation models, mak-
ing the model performance of using the synthesized audio
data as training data remains unknown. However, our man-
ual inspection revealed that the model frequently encounters
difficulties in generating audio samples, such as generated
audio related to water sounds often sounds like music. This
issue could be largely associated with the relatively small
data size in pre-training compared to other models.
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Table 3. Accuracy performance of the generated downstream model and standard FL on benchmark datasets. ”1x Synthetic” represents the
size of synthetic data is one time as the real data.

Dataset 1x Synthetic 2x Synthetic 3x Synthetic FedAvg FedOpt

Image Data
CIFAR-10 61.48 (± 0.08) 67.41 (± 0.40) 75.65 (± 0.09) 64.48 (± 0.13) 72.68 (± 0.22)

CIFAR-100 24.70 (± 0.00) 33.41 (± 0.01) 41.76 (± 0.03) 25.89 (± 0.67) 20.85 (± 0.14)

Flowers102 24.94 (± 0.57) 28.26 (± 0.14) 31.29 (± 0.18) 30.30 (± 0.16) 26.43 (± 0.09)

Audio Data Google Command 24.78 (± 0.04) 25.65 (± 0.07) 26.24 (± 0.01) 73.68 (± 0.49) 83.01 (± 0.23)

ESC-50 6.89 (± 0.29) 8.68 (± 0.35) 12.72 (± 0.31) 22.76 (± 1.01) 32.49 (± 0.57)

Figure 5. Impact of synthetic data sample
number to the generated downstream model.
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Figure 7. Learning curve of the global
model during training on Google speech
commands dataset.

Impact of Numbers of Synthetic Data. With both im-
age and audio data, one commonality is centralized training
with synthetic data can benefit from increasing the number
of synthetic data. To validate this finding, we test the im-
pact of numbers of synthetic data on the performance of
the generated model on the Flowers102 dataset, where we
increase the size of the synthetic data up to ten times that
of the real data. As shown in Figure 5, our experimental
results demonstrate that as we enlarge the amount of syn-
thetic data, the performance of the model improves. One
justification for this finding is that enlarging the number of
synthetic data enriches the diversity and increases overlap
between the synthetic and real data, allowing the model to
learn more robust and generalizable features. Even if the
data is generated randomly by the label name without any
other diversity-enriching guidance from the real data, with
more synthetic data, there is an increasing chance that some
of these additional synthetic data overlap with the real data,
allowing the model to perform better on the real test data.

(2) What benefits does GPT-FL bring?
We explore the benefits that GPT-FL provides for cus-

tom models that are built on top of downstream models gen-
erated from synthetic data. Specifically, we want to examine
how fine-tuning these downstream models with private data
under the FL framework can lead to performance improve-
ments. To demonstrate how GPT-FL can be integrated with
existing FL server optimizers, we evaluate its performance
with both FedAvg and FedOpt as the server aggregator. Our

experimental results are presented in Table 4.

Effectiveness of Private Data. Our experiments demon-
strate the effectiveness of incorporating private data with FL
into the finetuning process of the downstream model gener-
ated from synthetic data. As shown in Table 4, regardless of
the modality and quality of the synthetic data used to gen-
erate the downstream model, FL fine-tuning leads to sig-
nificant performance gains, outperforming the ones trained
solely with FL or CL combined with synthetic training by
a large margin. Furthermore, we observe that fine-tuning
with private data can especially benefit the cases for out-
of-domain synthetic data, such as in the audio data. For ex-
ample, GPT-FLwith FedOpt could achieve 43.46 test accu-
racy in the ECS-50 dataset, which nearly provides two times
increment than standard FL and three times increment than
centralized training by synthetic data. These results sug-
gest that leveraging private data with FL in the fine-tuning
process can greatly enhance the performance of synthetic
data-generated models, making them more suitable for real-
world applications.

Generated Downstream Model Helps FL Optimiza-
tion. To gain a comprehensive understanding of why the
custom models built using GPT-FL provide benefits to per-
formance improvements, we decided to compare the gradi-
ent diversity between model weights initialized by GPT-FL
and random initialization. Specifically, we apply the defini-
tion of the gradient diversity introduced from [42] by adapt-
ing the gradients gi to client update !i:
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Table 4. Accuracy comparison between generated downstream model, standard FL and GPT-FL. Differ from the experiments shown in
Table 1, the CIFAR-10 and Flowers102 datasets are trained with ResNet18 model and the CIFAR-100 dataset is trained with ResNet50
model. ”!Metric” represents the accuracy increment by GPT-FL on top of the generated downstream model.

Dataset 3x Synthetic FedAvg FedOpt GPT-FL w/ FedAvg GPT-FL w/ FedOpt !Metric

CIFAR-10 75.65 (± 0.09) 64.48 (± 0.13) 72.68 (± 0.22) 81.38 (± 0.05) 79.08 (± 0.17) → 5.73

CIFAR-100 41.76 (± 0.03) 25.89 (± 0.67) 20.85 (± 0.14) 62.83 (± 0.31) 48.80 (± 0.12) → 21.07

Flowers102 31.29 (± 0.18) 30.30 (± 0.16) 26.43 (± 0.09) 70.56 (± 0.34) 77.57 (± 0.03) → 46.28

Google Command 26.24 (± 0.01) 73.68 (± 0.49) 83.01 (± 0.23) 81.90 (± 0.20) 83.46 (± 0.11) → 57.22

ESC-50 12.72 (± 0.31) 22.76 (± 1.01) 32.49 (± 0.57) 41.80 (± 0.32) 43.46 (± 0.30) → 30.74

Table 5. Accuracy performance comparison between generated downstream model, standard federated learning and GPT-FL. All the
training is initialized by ImageNet-based pre-train model.

Dataset 3x Synthetic FedAvg FedOpt GPT-FL w/ FedAvg GPT-FL w/ FedOpt

CIFAR-10 72.65 (± 0.05) 66.10 (± 0.03) 79.08 (± 0.39) 75.87 (± 0.73) 82.20 (± 0.61)

CIFAR-100 42.30 (± 0.01) 62.83 (± 0.03) 45.27 (± 0.10) 66.84 (± 0.05) 66.03 (± 0.02)

Flowers102 41.05 (± 0.26) 80.73 (± 0.01) 87.33 (± 0.29) 86.18 (± 0.04) 88.66 (± 0.40)

!S =

∑
i↑S ||!i||2

||
∑

i↑S !i||2
(1)

where S is the set of sampled clients in each communi-
cation round and i represents the client index. As shown in
Figure 6, the gradient diversity plot for FedAvg reveals that
GPT-FL displays lower initial gradient diversity compared
to random initialization. Over training time, both GPT-FL
and random initialization converge to similar gradient diver-
sity levels, consistent with the performance curve in Figure
7, where a larger !S corresponds to slower convergence
rate. This aligns with prior findings [26], indicating that
starting from a pre-trained model leads to less variation in
local client updates, potentially addressing the client drift
issue.

Harmonization With Existing Pre-train Model. As
the standard FL framework, GPT-FL could also benefit
from other existing pre-train models. Specifically, besides
training from scratch, GPT-FL could utilize the existing
pre-train model to start training the synthetic data to gen-
erate downstream model and finetune it again with private
data in FL. Table 5 presents the performance evaluation
of GPT-FL on top of the pre-trained models for image
datasets. We follow the approach from prior work [26]
and use the ImageNet pre-trained model available in the
PyTorch Torchvision library. Our experiments show that
GPT-FL achieves better results compared to training solely
with FL or synthetic data, as reported in Table 4. No-
tably, the improvement in performance is consistent across

three image benchmark datasets, with a gain ranging from
1% to 11% compared to the results in Table 4. These re-
sults demonstrate that GPT-FL can effectively leverage pre-
trained models to improve performance in the FL setting.

5. Conclusion
We present GPT-FL, a generative pre-trained model-
assisted federated learning framework. GPT-FL leverages
the generative pre-trained model to generate diversified syn-
thetic data for a wide range of data modalities before FL
training. This synthetic data is then utilized to construct
a downstream model, which undergoes fine-tuning with
private data within a standard FL framework. Our ex-
perimental results showcase the remarkable performance
of GPT-FL when compared to state-of-the-art FL meth-
ods. Through detailed ablation studies, we demonstrate that
GPT-FL is a flexible and applicable framework solution to
the challenges associated with cross-device FL scenarios.

Limitations and Future Works. Due to the limitations
in our computational resources, we cannot further scale
up the synthetic data volume in our study, as it may take
several weeks for the generation. We do not investigate
the larger model sizes in our current study, which we will
pursue it as our future work. We also want to explore
the expansions of the GPT-FL framework. GPT-FL
seamlessly integrates with the vanilla FL framework,
allowing for harmonization with most of the existing
FL methods. We are interested in exploring the combi-
nation of the public-data-based FL aggregation scheme
and the GPT-FL framework by replacing the public data.
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