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A. Data Distributions
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Figure A.1. We split EuroSAT[5] into 7 clients based on subre-
gion grouping according to “The World Factbook”. We use the
geolocation information in GeoTIFF files to identify the countries
of origin, based on which we assign images to specific clients.
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Figure A.2. We split dataset into 5 clients with class imbalance.
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Figure A.3. We use exact clients split in FedISIC[8], which splits
dataset based on devices and hospital of origin.



B. Training Setup

For all the experiments, we use F1-Score as a performance
metric to account for class imbalances in test data. All the
results are reported on a common pooled testset for the re-
spective datasets. Collaboration happens at the end of ev-
ery local training epoch wherein the clients would send all
the trained models to the server. Global aggregation in the
server (RAGGR) is carried out once all models are received,
and after the aggregation, a single model is broadcast to all
the clients. This will be used as starting weights for the
next epoch locally. We call one single cycle of collabora-
tion a round with a total of T rounds. Since we take a cross-
silo setting, we assume all clients will be available for all
rounds throughout collaboration and assume hardware ca-
pabilities are homogeneous to train for a given task with a
given model.

FedSECA hyperparameters: Our proposed RAGGR has
2 hyperparameters corresponding to sparsification and
server momentum, which are kept the same for all experi-
ments, irrespective of the dataset. We use the Sparsification
factor γ = 0.9, following it as a general rule of thumb from
gradient compression and sparsification literature. We set
aggregator momentum βra = 0.5

Local Training Setup: Local (clients) training hyperpa-
rameters are constant across all experiments, defense/attack
settings, and ablations unless specified explicitly. We use
AdamW optimizer with weight decay= 1× 10−6 and betas
of β1 = 0.9, β2 = 0.999 and optimizer state is reset for
every epoch. For Cifar10 lr = 1 × 10−3 ran for 50 epochs
with a batch size of 64 and image size 224 and Kaiming
weight initialization is used; for ISIC lr = 1 × 10−4 ran
for 100 epochs with a batch size of 32 and image size of
200 and Imagenet-1K pretrained weights is used as initial-
ization; for EuroSAT lr = 1× 10−5 ran for 50 epochs with
a batch size of 32 and image size of 224 and Imagenet-1K
pretrained weights is used as initialization.

Comparison with Baselines: For experiments in Paper-
Fig.3, the datasets are divided into cross-silo clients as
shown in Sec. A. The Mean values of the last 5 communica-
tion rounds are tabulated in Tab. C.1 highlighting the train-
ings that collapsed or were severely impacted. We use F1-
Score as a performance metric considering class imbalances
in test data. Experiments were run on NVIDIA GeForce
RTX 4090 24GB machines. For all three datasets, 2 clients
in 4th and 5th rank are Byzantines. We compare several
robust aggregators with our method, and the exact formula-
tions and hyperparameters of the compared robust aggrega-
tors are discussed in Sec. E and attacks are discussed Sec. D.

FedSECA Component Ablation: In the experiments re-
ported in Paper-Tab.1, we disable and enable certain com-
ponents in order to check the criticality of components in
defending against specific attacks. We use the CIFAR10
split shown in Fig. A.2. Experiments were run on NVIDIA
GeForce RTX 4090 24GB machines. The Paper-Tab.1 sec-
ond column also shows the variable that we set to enable or
disable certain components.

FedSECA Hyperparameter Sensitivity: In the experi-
ments in Paper-Fig.4, we study the effect of varying the
two hyperparameters in the FedSECA. We use the CI-
FAR10 split shown in Fig. A.2. Experiments were run
on NVIDIA GeForce RTX 4090 24GB machines. For
server momentum (βra), we experiment with the val-
ues {0.9, 0.75, 0.5, 0.25, 0.1, 0.0}. And for
the Sparsificaton ratio (γ), we experiment with values
{0.99, 0.9, 0.82, 0.67, 0.51, 0.22} with 50 rounds col-
laboration.

Proportion of Byzantines: For experiments in Paper-
Fig.5, we use CIFAR10-IID split with 64 clients where class
label distribution is homogeneous. The batch size of 16 is
used for local training. The Byzantines counts are varied
as 8(12%), 17(25%), 31(< 50%), 34(> 50%), 40(62%)
out of 64 clients. The experiment was run on NVIDIA A100
SXM4 40GB machines.

Increasing Number of Clients: For experiments in
Paper-Tab.2, we use CIFAR10-IID split with varying num-
ber of clients as 5, 10, 25, 50, 100, 200. The batch size
of 64 and all local training hyperparameters are the same.
The experiments were run on NVIDIA RTX A6000 49GB
machines. Additionally, the time taken by each robust ag-
gregator function with varying numbers of clients is bench-
marked in Tab. C.2 using CPU computation alone on In-
tel(R) Xeon(R) Silver 4215 CPU @ 2.50GHz. The Fed-
SECA is designed for cross-silo applications where only
a dozen clients are expected in collaboration; for the sake
of being exhaustive, we compare the time for client counts
from 4 to 256.



C. FedSECA
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FedAvg (No Defense) 0.10 0.02 0.02 0.69 0.82 0.02 0.02 0.88 0.32 0.97 0.90 0.02 0.89 0.97 0.02 0.02 0.98 0.60 0.71 0.53 0.01 0.59 0.77 0.04 0.08 0.77 0.44
Krum 0.02 0.02 0.04 0.76 0.62 0.76 0.02 0.76 0.38 0.98 0.41 0.54 0.54 0.93 0.54 0.54 0.54 0.63 0.24 0.06 0.22 0.09 0.67 0.22 0.18 0.22 0.24
RFA 0.14 0.50 0.02 0.80 0.71 0.65 0.02 0.88 0.46 0.97 0.70 0.01 0.93 0.96 0.14 0.01 0.97 0.59 0.62 0.29 0.08 0.51 0.51 0.04 0.08 0.67 0.35
CWTM 0.04 0.02 0.05 0.66 0.79 0.02 0.02 0.89 0.31 0.97 0.58 0.02 0.88 0.96 0.02 0.02 0.97 0.55 0.61 0.31 0.08 0.54 0.62 0.04 0.00 0.72 0.36
HuberLoss 0.14 0.72 0.04 0.85 0.62 0.77 0.02 0.89 0.51 0.97 0.69 0.78 0.93 0.95 0.96 0.78 0.97 0.88 0.61 0.29 0.35 0.50 0.66 0.66 0.36 0.67 0.51
CClipping 0.46 0.62 0.02 0.85 0.83 0.02 0.02 0.88 0.46 0.97 0.90 0.02 0.89 0.97 0.19 0.02 0.98 0.62 0.71 0.53 0.08 0.59 0.76 0.27 0.00 0.77 0.46
CC-RandBucket 0.06 0.02 0.02 0.72 0.83 0.02 0.02 0.88 0.32 0.97 0.88 0.02 0.79 0.97 0.15 0.02 0.98 0.60 0.71 0.53 0.01 0.58 0.78 0.16 0.08 0.76 0.45
CC-SeqBucket 0.79 0.54 0.02 0.84 0.80 0.02 0.02 0.88 0.49 0.95 0.88 0.02 0.50 0.96 0.15 0.02 0.96 0.55 0.71 0.47 0.02 0.45 0.73 0.24 0.00 0.72 0.42
COPOD-DOS 0.82 0.47 0.04 0.84 0.63 0.02 0.03 0.87 0.46 0.95 0.22 0.93 0.93 0.92 0.92 0.05 0.93 0.73 0.42 0.13 0.51 0.27 0.42 0.10 0.08 0.49 0.30
FL-Detector 0.02 0.52 0.46 0.06 0.44 0.81 0.70 0.88 0.49 0.96 0.72 0.93 0.93 0.97 0.94 0.93 0.97 0.92 0.37 0.24 0.57 0.50 0.44 0.57 0.57 0.66 0.49
TIES-Merging 0.85 0.02 0.73 0.72 0.81 0.02 0.03 0.82 0.5 0.98 0.92 0.02 0.91 0.97 0.02 0.01 0.98 0.60 0.73 0.00 0.05 0.60 0.72 0.04 0.00 0.75 0.36
FedSECA (Ours) 0.72 0.82 0.78 0.76 0.77 0.72 0.83 0.81 0.78 0.96 0.95 0.94 0.94 0.96 0.94 0.94 0.97 0.95 0.64 0.46 0.47 0.52 0.56 0.53 0.45 0.51 0.52

Table C.1. Main Results as Table: This corresponds to the main result in Paper-Fig.3 showing convergence of various RAGGR uder
attacks. Values shown are the mean F1-score of the last 5 comm-rounds computed on the test set. It can be clearly seen that all defenses
collapse, at least for some of the attacks, whereas FedSECA is robust to all attacks. Only in the FedISIC dataset, the overall results are
suboptimal, yet it does not collapse for any of the attacks, managing to converge.
Red indicates that the training collapsed due to the attack, cutoff at 0.2 for all three datasets.
Orange indicates that the training was impacted severely, cutoff at 0.5(CIFAR10), 0.55(EuroSAT) and 0.4(FedISIC).

Yellow indicates a noticeable drop in accuracy, cutoff at 0.7(CIFAR10), 0.9(EuroSAT) and 0.6(FedISIC).

Client Count 4 8 16 32 64 128 256

FedAvg 0.20±0.01 0.35 ±0.01 0.50 ±0.05 1.37 ±0.02 2.69 ±0.14 5.69 ±0.26 11.52 ±0.51

Krum 0.59±0.02 1.79 ±0.01 6.28 ±0.01 24.49 ±0.26 95.84 ±0.39 383.56 ±0.35 1606.68±3.75

RFA 0.86±0.02 1.48 ±0.01 2.61 ±0.02 5.69 ±0.04 11.54 ±0.21 23.80 ±0.40 48.55 ±0.26

CWTM 1.62±0.02 3.46 ±0.01 8.20 ±0.06 19.76 ±0.05 44.42 ±0.47 99.80 ±0.92 219.33 ±0.71

HuberLoss 1.47±0.01 2.04 ±0.01 2.73 ±0.01 5.81 ±0.01 11.50 ±0.21 23.60 ±0.01 35.64 ±0.46

CClipping 1.21±0.01 2.20 ±0.01 4.04 ±0.00 8.49 ±0.04 16.92 ±0.22 35.09 ±0.52 70.87 ±0.41

CC-RandBucket 0.97±0.01 1.77 ±0.02 2.63 ±0.02 6.51 ±0.03 12.58 ±0.57 26.87 ±0.22 53.06 ±0.13

CC-SeqBucket 1.11±0.01 2.14 ±0.02 2.91 ±0.13 8.39 ±0.06 16.97 ±0.20 34.84 ±0.11 70.39 ±0.08

COPOD-DOS 2.66±0.17 8.70 ±0.05 32.68±0.12 127.52±0.03 503.49±0.06 2036.33±4.08 8663.10±24.31

FL-Detector 1.55±0.37 2.81 ±0.56 5.89 ±1.06 12.51 ±2.58 23.49 ±4.88 46.40 ±9.26 94.14 ±19.73

TIES-Merging 1.89±0.04 3.36 ±0.07 6.25 ±0.10 12.40 ±0.21 24.71 ±0.89 51.46 ±1.65 107.06 ±1.40

FedSECA (Ours) 4.87±0.00 12.30±0.04 37.79±0.18 125.27±0.24 456.32±0.45 1791.72±3.72 8073.35±25.93

Table C.2. Time for single aggregation call of each RAGGR: The times shown are in seconds it took to complete aggregation operation.
We report each aggregator function’s mean and standard deviation by repeating the function 5 times. We use the ResNet18 model with
a parameter size of 11.2M. Benchmarking is conducted with a CPU with 8 virtual cores node (AMD EPYC 9654) without GPU. We
implement all the aggregator functions from scratch using torch tensors and numpy arrays using standard library functions without using
any approximations or operation-specific optimizations. It can be observed that FedSECA is suitable for Cross-Silo settings, and it takes
very long with a large number of clients but provides superior robustness to various attacks as shown in Paper-Fig.3. For Cross-Device
applications, we recommend a client selection approach before robust aggregation.



Algorithm 1: FEDSECA Gradient Aggregation —PyTorch pseudocode

1 ## Initialize
2 K = number_of_clients
3 beta = 0.5
4 gamma = 0.9
5 g = torch.vstack([g1, g2, g3,...,gk]) # all clients gradients
6 g_tminus1 = g_sent_in_previously # will be initialized to 0
7

8 def FedSECA_aggregator(g, g_tminus1, gamma, beta, K):
9 ## Magnitude of Gradients

10 magn_g = torch.abs(g)
11

12 ## Sign of Gradients
13 sign_g = torch.sign(g)
14

15 ###### CRISE block =========================
16

17 ## Concordance Ratio Computation
18 rating_list = []
19 for i in range(K):
20 omega_c = torch.F.cosine_similarity(sign_g.view(K,-1) , sign_g[i].view(1,-1))
21 rho_i = torch.sign(omega_c).mean()
22 rho_list.append(rho_i)
23 cr_rho = torch.vstack(rho_list).view(K,1)
24 cr_rho = torch.clamp(cr_rho, min=0)
25

26 ## Sign Voting
27 voted_sign = (sign_g*repute).sum(dim=0).view(1,-1)
28

29 ###### RoCA block =========================
30

31 ## Gradient Clipping
32 g_norms = torch.norm(g, dim=1)
33 med_norm, _ = torch.median(norms, dim=0)
34 norm_clip = torch.minimum(torch.tensor(1.0), med_norm/g_norms)
35 g_clipped = g.view(K,-1) * norm_clip.view(K, 1)
36

37 ## Gradient Clamping
38 med_magn, _ = torch.median(torch.abs(g_clipped), dim=0)
39 g_hat = torch.clamp(g, max=med_magn, min=-med_magn)
40

41 ## Top-K Sparsification
42 q = magn_g.quantile(gamma, dim=1)
43 g_ddot = g_hat; g_ddot[magn_g<q] = 0.0
44

45 ## Coordinate-wise Gradient aggregation
46 g_mask = (0<(g_ddot * voted_sign)).int()
47 g_selected = g_ddot * g_mask
48 g_divisor = g_mask.sum(dim=0)
49 g_aggregate = safe_divide(g_selected.sum(dim=0), g_divisor)
50

51 ## Server Momentum
52 g_send = (1-beta)*g_aggregate + beta*g_tminus1
53 g_tminus1 = g_send
54

55 return gsend



C.1. Concordance Ratio in CRISE
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0 10 20 30 40 50
Comms Round (t)

 C
lie

nt
1

 C
lie

nt
2

 C
lie

nt
3

 C
lie

nt
4

 C
lie

nt
5

 C
lie

nt
6

 C
lie

nt
7

ALIE

0 10 20 30 40 50
Comms Round (t)

 C
lie

nt
1

 C
lie

nt
2

 C
lie

nt
3

 C
lie

nt
4

 C
lie

nt
5

 C
lie

nt
6

 C
lie

nt
7

IPM

0 10 20 30 40 50
Comms Round (t)

 C
lie

nt
1

 C
lie

nt
2

 C
lie

nt
3

 C
lie

nt
4

 C
lie

nt
5

 C
lie

nt
6

 C
lie

nt
7

Fang

0 10 20 30 40 50
Comms Round (t)

 C
lie

nt
1

 C
lie

nt
2

 C
lie

nt
3

 C
lie

nt
4

 C
lie

nt
5

 C
lie

nt
6

 C
lie

nt
7

LabelFlip

0 10 20 30 40 50
Comms Round (t)

 C
lie

nt
1

 C
lie

nt
2

 C
lie

nt
3

 C
lie

nt
4

 C
lie

nt
5

 C
lie

nt
6

 C
lie

nt
7

Mimic

0 10 20 30 40 50
Comms Round (t)

 C
lie

nt
1

 C
lie

nt
2

 C
lie

nt
3

 C
lie

nt
4

 C
lie

nt
5

 C
lie

nt
6

 C
lie

nt
7

Scaling

0 10 20 30 40 50
Comms Round (t)

 C
lie

nt
1

 C
lie

nt
2

 C
lie

nt
3

 C
lie

nt
4

 C
lie

nt
5

 C
lie

nt
6

 C
lie

nt
7

No Attack

0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1

EuroSAT - Concordance Ratio ( ) in FedSECA

0 20 40 60 80 100
Comms Round (t)

 C
lie

nt
1

 C
lie

nt
2

 C
lie

nt
3

 C
lie

nt
4

 C
lie

nt
5

 C
lie

nt
6

ALIE

0 20 40 60 80 100
Comms Round (t)

 C
lie

nt
1

 C
lie

nt
2

 C
lie

nt
3

 C
lie

nt
4

 C
lie

nt
5

 C
lie

nt
6

IPM

0 20 40 60 80 100
Comms Round (t)

 C
lie

nt
1

 C
lie

nt
2

 C
lie

nt
3

 C
lie

nt
4

 C
lie

nt
5

 C
lie

nt
6

Fang

0 20 40 60 80 100
Comms Round (t)

 C
lie

nt
1

 C
lie

nt
2

 C
lie

nt
3

 C
lie

nt
4

 C
lie

nt
5

 C
lie

nt
6

LabelFlip

0 20 40 60 80 100
Comms Round (t)

 C
lie

nt
1

 C
lie

nt
2

 C
lie

nt
3

 C
lie

nt
4

 C
lie

nt
5

 C
lie

nt
6

Mimic

0 20 40 60 80 100
Comms Round (t)

 C
lie

nt
1

 C
lie

nt
2

 C
lie

nt
3

 C
lie

nt
4

 C
lie

nt
5

 C
lie

nt
6

Scaling

0 20 40 60 80 100
Comms Round (t)

 C
lie

nt
1

 C
lie

nt
2

 C
lie

nt
3

 C
lie

nt
4

 C
lie

nt
5

 C
lie

nt
6

No Attack

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

FedISIC - Concordance Ratio ( ) in FedSECA

Figure C.4. Gradients Concordance Ratio (ρ): Evolution of ρ values for each client throughout the training computed in CRISE. Green
lines correspond to honest clients, Red lines correspond to malicious clients. Client-level Concordance Ratio is used solely for voting
weightage; once the optimal gradient signs are chosen for each parameter, the gradient filtering follows an egalitarian approach only
considering the alignment of the signs but not the ρ. If we filter at the client level solely based on ρ, there is a high chance that an honest
client might be ignored in its entirety and malicious clients might be included, especially as seen in the ALIE attack. Although ALIE evades
the detection while computing ρ, it will be filtered out in the sparsification step, criticality of the sparsification step in neutralizing ALIE is
also shown in Paper-Tab.1. Although it can be seen that some honest clients might have lower weightage, especially later in training, this
has little effect on convergence.



Let K represent the set of all clients involved in the fed-
eration, K = |K| total count of clients in the federation. Let
B represent a set of Byzantine or malicious clients present
in the consortium, B = |B| total count of Byzantine clients.
Let H represent a set of Honest clients, H = |H| = (K− B)
total count of Honest clients. Here B ⊂ {1, 2, .., k} and
H ⊂ {1, 2, .., k} such that set of all clients is given as
K = B ⊎ H and total count is |K| = |H| + |B|. Let D
represent the number of parameters in the model M.

The rest of the variable names (and Greek letters) hence-
forth defined are for specific attack methods and robust ag-
gregators. These variables are different from the ones used
in FedSECA in main paper unless specified otherwise.

D. Attacks Formulation
▽
w or

▽
g represents poisoned weights or gradients sent by

byzantine clients. Let δ be small noise added to the at-
tack hyperparameters to make the attack vector slightly dif-
ferent from each other to evade any heuristic checks, here
δ ∼ Uniform(−0.05, 0.05)

D.1. Crafting Parameter Direction (Fang)

Fang attack[4] shifts the global model parameter in a man-
ner that counters its actual direction of change in the ab-
sence of any attacks. s indicates an increase or decrease
(sign) of the global model parameter relative to the previous
iteration. Thereby the objective is to perturb the weights in
the opposite direction to s

▽
w

(t)
b = w̃(t−1) − λf · s ∀ b ∈ B

s = sgn(µ(t)
wH

− w̃(t−1))

where µ(t)
wH

=
1

H

∑
k∈H

w
(t)
k

(1)

Here λf is the strength of the attack, which can be ad-
justed as required. Here we use λ = 0.1 + δ. sgn is the
signum function.

D.2. A Little is Enough (ALIE)

In ALIE[2], the authors demonstrate that by consistently
applying minor alterations to numerous parameters, a ma-
licious client can disrupt the convergence of the global
model. Given the normal distribution of data, if the attacker
has access to a representative subset of the workers, only
the corrupted workers’ data is needed to estimate the mean
and standard deviation of the distribution, thereby facilitat-
ing the manipulation of models.

▽
g
(t)
b =µ(t)

gH
− zmax · σ(t)

gH
∀ b ∈ B

where µ(t)
gH

=
1

H

∑
k∈H

g
(t)
k ,

σ(t)
gH

=

√
1

H

∑
k∈H

(g
(t)
k − µ

(t)
gH)2

(2)

Here, zmax corresponds to the factor determining the
standard deviation shift of the attack vector from actual hon-
est updates. In literature this is computed based on the num-
ber of clients involved, which was ineffective under a cross-
silo setting, thus we choose an empirical value based on the
impact on no defense setting. We set zmax = 1.0 + δ.

D.3. Inner Product Manipulation (IPM)
The basis for the IPM[12] lies in the observation that as
the gradient descent algorithm approaches convergence,
the gradient g tends toward 0. Consequently, despite the
bounded distance between the robust estimator and the true
mean, it remains feasible to manipulate their inner product
to yield a negative value.

⟨ ∇L(w), AGGR({gk : k ∈ K}) ⟩ ≥ 0 (3)

In gradient descent algorithms, convergence in the loss is
guaranteed only if the inner product between the true gradi-
ent ∇L(w) and the robust estimator remains non-negative
as shown 3. Hence the potential attack vector can be formed
as below:

▽
g
(t)
b = − ϵ · µ(t)

gH
∀ b ∈ B

where µ(t)
gH

=
1

H

∑
k∈H

g
(t)
k

(4)

Here in IPM, ϵ is the strength of the attack, which can
be adjusted to increase or decrease attack intensity while
remaining undetected. Here we use ϵ = 1.3 + δ.

D.4. Mimic
The objective of the Mimic attack proposed in [6] is to
maximize the data imbalance perceived by aggregators,
especially middle-seeking approaches, even in balanced
datasets. This works by overemphasizing a specific set
of clients in margins by mimicking their updates, thereby
forming a majority. Because of this, clients with rich gra-
dients will be excluded. The severity of the attack will in-
crease with the increase in heterogeneity among actual dis-
tribution and type of defense mechanism used. For identi-
fying the client to mimic k⋆, we compute the direction z of
maximum variance of the honest workers’ gradients. The
client to mimic during the warmup steps are determined as
follows



▽
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(5)
the computation of z can be approximated as below,

z(t+1) ≈ t

1 + t
z(t)+

1

1 + t

∑
k∈H

(g
(t+1)
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(6)
After the warmup steps, the mimicked client is kept con-

stant k⋆ obtained at t for the rest of the training. z is initial-
ized randomly at the beginning of the training and recom-
puted at each step during the warmup steps.

D.5. LabelFlip
Suppose, C set classes in the classification task, label flip-
ping involves inverting labels such that prediction ŷi each
image maps to the wrong class y′i instead of true yi.

y′i = C− yi where y ∈ C and C = |C|

such that the categorical cross-entropy optimization of a
Byzantine client becomes

▽
w

(t)
b = w̃(t+1) − η · 1

Nk

Nk∑
i=1

ℒ(w;xi, y
′
i) ∀ b ∈ B (7)

This would perturb the gradients, especially ones that
are closer to the classification head, in the wrong direction;
thus, the majority of the gradients will follow the actual
direction, thereby remaining closer to other honest clients,
while the critical gradients’ specific task at hand will be poi-
soned.

D.6. Scaling
In Scaling attack, the original gradients are scaled by a fac-
tor ε, and this will derail the training. If the scaling is pos-
itive, then the direction of gradients will align with the true

gradients, but the value will be higher than the regular val-
ues. This will cause the gradients to explode and destabi-
lize the training. If the directions are flipped, this becomes
equivalent to an IPM attack. In this work, we set the scaling
factor as ε = 10.

▽
g
(t)
b = ε · µ(t)

gH
∀ b ∈ B

where µ(t)
gH

=
1

H

∑
k∈H

g
(t)
k

(8)

D.7. Adaptive Attack
For optimization-based adaptive attacks, we use Min-
Max[11] attack, with sign flipping (similar to [4]) where
the attack strength is adaptively optimized for the defense
employed based on the impact it can make on a given set of
updates from honest clients. This version of the attack that
we evaluated assumes full access to all benign gradients at
the current step and robust aggregation strategy used in the
server (agr-updates).

E. Defenses Formulation
A robust aggregator would take all the clients’ update vec-
tors and is expected to return an update g̃ that is closer to
true gradients and devoid of any potential corruptions.

g̃(t) = RAGGR({g(t)
k : k ∈ H ⊎ B}) (9)

For the subsequent section, time step t is skipped for con-
venience, and all the aggregation is at timestep t gathering
tth parameters of local clients unless indicated otherwise.

E.1. Krum
Krum[3] is a middle-seeking aggregator that selects a gra-
dient that is closest to the most client vectors. The method
computes the distance score (ς) for each client based on its
neighbors, and the client with a very minimal score is taken
as a robust aggregate. In the Multi-Krum version, instead
of taking a single client’s update as aggregate, the average
of top-m clients with the minimum distance is returned as
aggregate.

w̃ = KRUM({wk : k ∈ K}) := wi⋆

i⋆ = argmini∈K(ς1, . . . , ςK)

ςi =
∑
i→k

∥wi −wk∥2 ∀i, k ∈ K
(10)

Notation i → k indicates the nearest neighbours for i of
count of which is [K − B − 2]. The i⋆ is specific client
for which condition ςi⋆ ≤ ςi holds for all i ∈ K. Multi-
Krum selects m weight vectors {w⋆

1, . . . ,w
⋆
m} that has

minimal distance scores and takes the average of these vec-
tors 1

m

∑m
i=0 w

⋆
i as aggregate. In our experiments, we take

m = 1.



E.2. Coordinatewise Trimmed Mean (CWTM)

CWTM [14] is a middle-seeking approach on individual
vector elements across clients, respectively, instead of the
whole vector. The median version selects single median val-
ues of gradients for each coordinate, discarding the rest of
the gradients. For a set of client gradient vectors gk ∈ Rθ,
the coordinate-wise median is defined as follows:

g̃ = CWMED({gk : k ∈ K}) := [g̃0, g̃2, . . . , g̃D]

g̃φ = median({gφ
k : k ∈ K}) ∀φ ∈ [D]

(11)

For each coordinate φ of g̃ is calculated by taking the
median of the corresponding coordinates from all vectors
gk, where median represents the median operation on a
given set of numbers.

The same formulation can be extended to trimmed mean
statistics, where at each coordinate β amount, gradients in
both extremities are discarded, and the rest of the gradients
are averaged. This is more advantageous than the median as
richer gradients from other clients can also contribute. The
motivation is that Byzantine clients will have their gradients
far away from the honest clients’ gradients, i.e. in the ex-
tremities. Here each coordinates φ is computed as the mean
of {gφ

k ; k ∈ Uφ} where Uφ is obtained by removing β frac-
tion of largest and smallest elements from {gφ

1 ,g
φ
2 , ...,g

φ
K }

for a given coordinate φ

g̃ = CWTRMEAN({gk : k ∈ K}) := [g̃1, . . . , g̃θ]

g̃φ =
1

K · (1− 2β)

∑
g∈ Uφ

g , ∀φ ∈ [θ]

Uφ = {aφi : βK < i ≤ (1− β)K} ∀φ ∈ [θ]

aφ = sort[gφ
1 ,g

φ
2 , . . . ,g

φ
K ]

(12)

Here β ∈ [0, 1
2 ) indicates the proportion of possible

Byzantines in collaboration, thus malicious gradients can
be discarded. For our experiments, we set β = 0.2.

E.3. COPOD Distance-based Outlier Suppression
(COPOD-DOS)

This method[1] detects and suppresses the outliers among
the clients’ parameters based on their pairwise distance. It
uses both cosine similarity and Euclidean distance measures
for identifying the outlier. This approach applies COPOD
outlier detection method on the pairwise distance matricies
(MS,ME) and produces an outlier score r = [r1, . . . , rK]
where ri ∈ (0,∞) for each client. The outlier score is used
to create weightage (λ) for each client that sums to 1 by
applying softmax for aggregation.

w̃ = COPODDOS({wk : k ∈ K}) :=
∑
k∈K

λkwk

[λ0, . . . , λk] = softmax(r) where r =
rS + rE

2

rS = COPOD(MS) ; MS =
[
aSij

]
rE = COPOD(ME) ; ME =

[
aEij

]
aSij = 1− w⊤

i ·wj

∥wi∥ ∥wj∥
i, j ∈ [K]

aEij = ∥wi −wj∥ i, j ∈ [K]
(13)

E.4. Robust Federated Aggregation - Geometric
Median (RFA)

Geometric Median is statically more robust than other
methods leveraging the centrality of parameter distribution
in clients. But the critical problem is that achieving this
minimization problem computationally is tricker and hin-
ders the practicality. RFA[10] method handles this as a min-
imization problem and utilizes Smoothed Weiszfeild’s algo-
rithm to approximate the geometric median v in a faster and
most stable manner.

w̃ = GEOMEDIAN({wk : k ∈ K})

:= argmin
v

∑
k∈K

∥v −wk∥

v(r+1) =

∑K
i=1 β

(r)
i ·wi∑K

i=1 β
(r)
i

, ∀r ∈ [1, . . . ,R]

where β
(r)
i =

αi

max[ε, ∥v(r) −wi∥]
, αi =

1

K
(14)

The median is computed iteratively with R steps. In our
experiments, we set the Weiszfeld iterations R = 3.

E.5. Centered Clipping (CClipping)

Centered Clipping [7] involves rescaling the gradient vec-
tor if it exceeds a predetermined radius from the reference
vector and retaining it in the original scale if it is within the
threshold. The underlying principle of this approach is that
malicious gradients have to be far away from the reference
vector (v), leading to excessive Euclidean distance, which
will trigger clipping. This method only scales back to a spe-
cific range and, thus does not exclude or suppress updates
during aggregation from any clients, hence all diverse up-
dates contribute to the aggregate vector. Clipping is carried
out iteratively with Q steps during each aggreagation round.



This further improves the convergence of training with en-
hanced stability and robustness while also ensuring con-
vergence guarantees. This work also explores momentum-
based gradient updates from honest workers so that the vari-
ance of each global aggregation is bounded, hence further
reducing the scope of the attack. For our evaluation, we re-
set the momentum in the optimizer during each global round
to make the comparison fair with other approaches. Global
aggregation at t-th round can be given as

g̃(t) = CCLIPQ({g(t)
k : k ∈ K}, g̃(t+1)) := v(Q)

v(q) = v(q−1) +
1

K

K∑
k=1

(
(g

(t)
k − v(q−1)) · κ

)
,

κ = min
[
1,

τ

∥g(t)
k − v(q−1)∥

]
∀q ∈ [1, . . . ,Q]

(15)

for the first clipping iteration gradient from the previous
aggregation is used as reference estimate, v0 = g̃(t+1). We
set clipping iterations as Q = 3 and the clipping radius as
τ = 100

E.6. Randomized Bucketing with Centered Clip-
ping (CC-RandBucket)

Randomized bucketing [6] approach splits the clients ran-
domly into L buckets, with each bucket holding S client
vectors. Each bucket is averaged into a single vector ul

before applying aggregation methods such as CCLIP. By
randomly splitting clients into buckets (a) There is a higher
chance of malicious updates grouped in different bins with
the majority of regular clients; therefore reducing the in-
fluence of malicious clients would be reduced (b) As the
clients in buckets are averaged, at least a few of the clients’
gradients are mixed and contribute to the aggregate vector
even if AGGR follows median approaches. This strategy
also reduces the variance of gradients (among ul) that are
passed to the aggregator. Also, because of the mixing of
representative gradients, over multiple rounds, the aggre-
gate vector will be closer to the true gradient, especially in
the absence of malicious updates and with mild heterogene-
ity.

g̃(t) = CCRANDB({g(t)
k : k ∈ K})

:= CCLIP1([u1, . . . ,uL], g̃
(t+1))

ul =
1

S

min[K, S·l]∑
i=S·(l−1)+1

shuffle(g(t)
1 , . . . ,g

(t)
K )i

∀ l ∈ [1, . . . ,L]; L = ⌈K/S⌉

(16)

For our experiments we set the clipping iterations Q = 1,
clipping radius τ = 100 and vectors per bucket S = 2.

E.7. Sequential Bucketing with Centered Clipping
(CC-SeqBucket)

Sequential Bucketing [9] takes a sequential aggregation
procedure rather than a single shot approach like in
CCRANDB. Total buckets is R with each bucket holding
S client vectors. When Byzantines count is substantially
higher, owing to randomness they can form a part in the
majority of the bucket affecting the aggregation. For ex-
ample, in CCLIP knowledge starting reference point (which
will be the previous round aggregate) can make the aggrega-
tion vulnerable to attack. So CCSEQB provides additional
guardrails to fix the above problems, (i) Instead of random
bucketing, uses similarity measures and partitions the vec-
tors into buckets (Gr) such that each bucket will include the
most dissimilar vectors, therefore Byzantines cannot choose
a unanimous direction and still form a majority within buck-
ets. (ii) AGGR is applied to each bucket instead of simple
averaging thus neutralizing deceitful updates at the bucket
level. (iii) When clipping instead of having the same ref-
erence vector for each bucket, use aggregate from the pre-
vious bucket u(r−1) as a reference vector, and hence ref-
erence keeps shifting for each bucket, and its randomized,
hence attacker cannot tailor anything specific to reference
vector.

g̃ = CCSEQB({gk : k ∈ K}) := u(R)

u(r) = CCLIP1({g : ∀g ∈ Gr}, ur−1)

∀ r ∈ [1, . . . ,R] R = ⌈K/S⌉

Gr = {g : 1 ≤ s ≤ S, if ∃ g ∼ As}

∀ r ∈ [1, . . . ,R]

As =
{

sort𝒴(g1, . . . ,gK)i :

[R · (s− 1) + 1] ≤ i ≤ min[K, R · s]
}

∀ s ∈ [1, . . . ,S]

where, 𝒴(a) ≜
a · g̃(t+1)

∥a∥∥g̃(t+1)∥

(17)

Here, 𝒴(a) function is the score to sort the gradients.
We use clipping iterations Q = 1, clipping radius τ = 100,
vectors per bucket S = 2.

E.8. TIES-Merging with Robustness
TIES-Merging [13] was introduced in the field of model
merging as the solution to prevent performance drop due
to information loss caused by interference of parameters.
They identify deterioration mainly due to redundant param-
eter values and conflicting signs among the important pa-
rameters. The proposed solution does sign election based



on the magnitude of the task vectors. The task vector
is the difference between the initial model vector and the
trained model vector, which is very much equivalent to gra-
dients computed in a single update round. When adapting
it as a defense against model poisoning, we cannot use the
magnitude-based election approach since malicious clients
can scale attack gradients, making it dominant. Thus, we
modified the TIES-Merging not to use magnitude but in-
stead to give equal weight to all gradients and make it con-
ducive to FL, which we define as R-TIESMERGE. We use
this modified method for comparison with other RAGGR In
our proposed method, we compute the weighting explicitly
using the Concordance Ratio, which differs from the TIES-
Merging.

g̃ = R-TIESMERGE({gk : k ∈ K}) := [g̃1, . . . , g̃D]

g̃φ =

∑K
k=0 δ

φ
k · vφ

k∑K
k=0 δ

φ
k

where δφk = I (uφ · vφ
k > 0)

(18)
Here δ ∈ {0, 1} is an indicator variable defined to repre-

sent the alignment of signs. u and v are defined as follows,

u = [ξ1, . . . , ξD] = sgn
[∑

k

sgn(gk)
]

k ∈ K

vk = sparsify(gk, γt) := [vφ : φ = 1 . . .D]

where vφ =

{
gφ
k if abs(gφ

k ) > quantile(gk, γt)

0 otherwise
(19)

Here γt is the sparsification factor which is set at 0.9,
and vector u represents the elect sign for each parameter in
the model.

E.9. Huber Loss-Based Weiszfeld Aggregation

This method minimizes multi-dimensional Huber loss (Φ)
in the server aggregator. Actual implementation uses a
modified Weizfield algorithm for the approximation indi-
cated in Eq.21. It considers two requirements for good ag-
gregator consistency without attack and robustness under
attack through L2-loss minimization and geometric median.

w̃ = HUBERLOSSAGG({wk : k ∈ K})

:= argmin
v

∑
k∈K

Φk(∥v −wk∥)

where Φk =

{
1
2u

2 if |u| ≤ Ti

Tku− 1
2T

2
k if |u| > Tk

(20)

c(r+1) =

K∑
k=1

min
(
1, τ

∥c(r)−wk∥

)
·wk

K∑
k=1

min
(
1, τ

∥c(r)−wk∥

) (21)

In this, we set the Huber loss threshold τ as 0.2, and set
the maximum number of iterations (r) for Weizfield as 100.

E.10. FL-Detector
FL-Detector tries to explicitly detect malicious clients based
on the history of previous updates. It uses GAP statistics
on suspicion scores (shown in Eq.22) to identify malicious
clients.

S(t) = {s(t)1 , s
(t)
2 , . . . , s(t)n } where

s
(t)
i =

1

T

N−1∑
r=0

d
(t−r)
i

d
(t)
i = ∥ĝ(t)

i − g
(t)
i ∥2

ĝ
(t)
i = g

(t−1)
i +H(t) · g(t)

i

(22)

Here, H Hessian vector calculated using L-BFGS[15]. T
is the window size that we set as 10. On suspicion score, we
run the GAP statistics to obtain the number of clusters. If
the cluster count is more than 1, then we assume that there is
the possibility of malicious updates. If so, we then apply K-
means clustering with a cluster size of 2 and take the clients
in the cluster with an overall minimum suspicion score.
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