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6. Computation and Communication Costs
Table 6 compares the computational and communication
costs of our proposed method with state-of-the-art meth-
ods in unsupervised federated person re-identification. The
computational cost is defined as the total number of training
epochs, calculated by the product of local training epochs
per round and the total number of communication rounds,
derived as:

Computational Cost = num of local epochs×num of rounds
(14)

This metric provides a comprehensive measure of resource
consumption, particularly valuable for real-world deploy-
ments where computational resources are often limited.

The communication cost refers to the total number of
communication rounds during federated learning training.

FedCAPR demonstrates significantly lower costs com-
pared to recent works [21, 32, 33, 37]. Specifically, it re-
duces computation costs by 3.9x, 3.4x, and 7.6x compared
to FedUReID, FedUCA, and FedUCC(Weng et al., 2022),
respectively. Additionally, FedCAPR achieves a 15x and
4x reduction in communication rounds compared to Fe-
dUCC(Weng et al., 2022) and FedUCC(Weng et al., 2023).
While the communication cost of our method is higher than
that of FedUCA, we achieve significant reductions in com-
putational cost. Moreover, FedCAPR outperforms in accu-
racy, as shown in Table 2.

Table 6. Comparison of computational and communication costs
across different methods.

Methods Computation Communication
Cost (Epoch) Cost (Round)

FedUReID [21] 566 20
FedUCC [37] 1100 300
FedUCC [32] 160 80
FedUCA [33] 500 10

FedCAPR(Ours) 145 20

7. Hyperparameter Sensitivity Analysis
In Table 7, we illustrate the impact of different coefficient
values (γ) on the camera-aware loss with respect to Rank-1
accuracy. We experimented with γ values of 0.25, 0.5, 0.6,
0.7, and 0.75. It is shown that, for most datasets, the accu-
racy drop tends to be smaller as γ increases, which is partic-

Table 7. Impact of Coefficients in Camera-Aware Loss.

γ 0.25 0.5 0.6 0.7 0.75

Duke 83.3 84.0 83.8 83.6 83.9
Market 91.6 93.1 92.7 92.7 92.8
iLIDS 78.6 78.6 79.6 81.6 78.6

CUHK03 72.5 72.9 72.3 73.4 73.6
Prid 77.0 82.0 84.0 85.0 78.0

VIPeR 62.3 67.7 66.1 68.7 68.7
CUHK01 95.1 95.0 95.2 95.6 95.4

3DPeS 83.7 85.8 83.7 87.4 85.8

ularly evident in datasets such as Duke, Market, CUHK03,
VIPeR, and CUHK01. Notably, when γ = 0.7, the accu-
racy is 7% higher than at γ = 0.75 in the PRID dataset.
Therefore, we chose γ = 0.7 as a balanced coefficient in
our experiments, offering a good trade-off between regular-
ization strength and model performance.

Table 8. Impact of Coefficients in Cosine Similarity Loss for Reg-
ularization.

δ 0.1 0.25 0.5 0.75

Duke 83.7 83.6 83.3 83.6
Market 93.1 92.7 93.2 93.5
iLIDS 77.6 81.6 79.6 81.6

CUHK03 74.2 73.4 73.1 73.1
Prid 82.0 85.0 80.0 82.0

VIPeR 65.5 68.7 66.5 65.2
CUHK01 95.7 95.6 95.5 95.8

3DPeS 86.6 87.4 83.7 83.7

In Table 8, we illustrate the impact of different coeffi-
cient values (δ) on the cosine-similarity regularization loss
with respect to Rank-1 accuracy. The evaluated coefficients
include 0.1, 0.25, 0.5, and 0.75. It can be observed that
most datasets experience the largest accuracy drop when
δ = 0.5, with PRID and 3DPeS showing this trend most
clearly. Notably, when δ = 0.25, the PRID dataset achieves
a 5% higher accuracy compared to δ = 0.5. Based on
the relatively stable performance on 3DPeS, CUHK03, and
CUHK01 when δ = 0.25, we selected 0.25 as the final co-
efficient value.

8. Robustness of IDE Mechanism
The purpose of this experiment is to demonstrate the robust-
ness of the IDE mechanism. We evaluate the performance
impact of varying the number of images per person iden-
tity(pid) in the IDE mechanism, as shown in Tab. 10. The



Table 9. Comparison of the accuracy(%) with Existed Unsupervised Federated Person Re-ID.

Methods MSMT17 Market iLIDS CUHK03 PRID VIPeR CUHK01 3DPeS
R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP

FedUReID [21] - - 65.2 - 73.5 - 8.9 - 38.0 - 26.6 - 43.6 - 65.5 -
FedUCC [37] - - 86.5 65.5 74.7 59.7 9.6 9.7 58.9 63.1 31.3 36.7 78.3 75.3 68.9 50.9
FedUCC [32] 60.9 30.4 90.3 75.2 82.8 72.0 38.7 35.5 69.0 72.0 43.0 48.6 80.1 76.6 73.2 57.8
FedUCA [33] - - 92.5 79.4 80.5 - 50.0 - 75.0 - 51.0 - 86.0 - 85.0 -

FedCAPR(Ours) 59.56 30.5 90.5 77.3 76.5 76.5 65.5 62.1 77.0 82.2 61.7 68.1 94.0 93.5 80.9 73.6

Table 10. Performance evaluation(%) for different number of image/pid.

Number of
images per pid

Duke Market iLIDS CUHK03 Prid VIPeR CUHK01 3DPeS
R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP R1 mAP

Initial dataset 83.4 69.8 92.7 81.6 80.6 76.6 66.9 62.7 86.0 89.7 53.8 62.7 89.2 88.0 86.5 80.0
10 83.4 69.8 92.8 82.5 79.6 77.9 74.9 70.8 84.0 88.2 66.8 73.0 95.4 94.7 86.6 81.2
15 83.1 69.8 92.7 81.8 79.6 75.5 73.4 69.7 84.0 87.4 65.3 73.5 95.3 94.7 87.8 79.9
20 83.6 69.6 92.7 82.5 81.6 77.8 73.4 69.7 85.0 88.4 68.7 75.8 95.6 95.1 87.4 79.2
25 83.2 70.0 92.5 81.6 82.7 75.4 73.4 69.5 84.0 87.3 64.2 71.4 93.7 92.7 83.3 78.0
30 83.0 69.5 93.0 82.0 81.6 79.3 68.6 65.1 83.0 87.1 63.9 70.6 93.7 92.7 84.2 76.7

Table 11. Comparison of Traditional Federated Learning Methods
with FedProx.

Methods FedProx FedCAPR(Ours)
mAP R1 mAP R1

Duke 65.9 79.7 69.6 83.6
Market 77.4 90.6 82.5 92.7
iLIDS 72.4 75.5 77.8 81.6

CUHK03 60.7 63.2 69.7 73.4
Prid 77.4 73.0 88.4 85.0

VIPeR 62.7 53.5 75.6 68.7
CUHK01 93.0 93.3 95.1 95.6

3DPeS 76.3 82.1 79.2 87.4

results indicate that aligning the number of images to 20
achieves the best performance, but slight deviations (e.g.,
between 10 and 30) do not significantly degrade accuracy.
This demonstrates that the IDE mechanism is resilient to
minor variations in alignment while still providing sufficient
standardization to improve clustering quality.

9. Comparison with FedProx [19]

As shown in Table 11, our proposed FedCAPR consistently
surpasses FedProx across all benchmark datasets in both
mAP and Rank-1 accuracy. Unlike FedProx, which merely
adopts an L2-norm based regularization by minimizing the
difference between global and local models, FedCAPR in-
troduces a camera-aware cosine similarity loss to enhance
inter-client generalization under heterogeneous conditions.
Notably, our method achieves significant improvements on
challenging datasets such as VIPeR (mAP: +12.9%, R1:
+15.2%), CUHK03 (mAP: +9.0%, R1: +10.2%), and

PRID (mAP: +11.0%, R1: +12.0%). Even on relatively
saturated datasets like CUHK01 and 3DPeS, FedCAPR still
yields noticeable gains, highlighting its robustness and gen-
eralizability across diverse domains. These results demon-
strate the effectiveness of our cosine-based regularization
strategy in addressing real-world data heterogeneity.

10. Extended Analysis with MSMT17 [52]
To further evaluate the generalizability of our proposed
method, we replace the commonly used DukeMTMC-reID
dataset with MSMT17, which contains a larger number
of cameras and greater scene diversity. As shown in
Table 9, FedCAPR consistently achieves superior perfor-
mance across various person re-identification benchmarks
when compared with recent federated methods including
FedUReID [21], FedUCC(Weng et al., 2022) [37], Fe-
dUCC(Weng et al., 2023) [32], and FedUCA [33]. Specif-
ically, FedCAPR obtains the highest mAP on MSMT17
(30.5%) and achieves state-of-the-art accuracy on most
small-scale datasets such as iLIDS (R1: 76.5%, mAP:
76.5%), CUHK03 (R1: 65.5%, mAP: 62.1%), PRID (R1:
77.0%, mAP: 82.2%), and VIPeR (R1: 61.7%, mAP:
68.1%). These results demonstrate the robustness of our
camera-aware regularization design in handling data het-
erogeneity across both large and small domains. Despite
the slight Rank-1 difference on MSMT17 compared with
FedUCC (59.56% vs. 60.9%), FedCAPR still achieves the
best trade-off between accuracy and consistency across di-
verse datasets.


	. Introduction
	. Related work
	. Unsupervised Person Re-ID
	. Federated Learning
	. Unsupervised Federated Person Re-ID. 

	. Methodology
	. Proxy Creation and the Memory Bank
	. Camera-Aware Contrastive Learning Loss
	. Cosine Similarity Regularization
	. Identity-Distributed Equalization
	. Cosine-Distance Weighted Aggregation

	. Experiments
	. Setup
	. Comparisons with the State-of-the-Arts
	. Ablation Study

	. Conclusion
	. Computation and Communication Costs
	. Hyperparameter Sensitivity Analysis
	. Robustness of IDE Mechanism
	. Comparison with FedProx fedml
	. Extended Analysis with MSMT17 msmt17

