
GPT-FL: Generative Pre-trained Model-Assisted Federated Learning

Supplementary Material

6. Appendix
6.1. Integration of IBLT in GPT-FL

Within the GPT-FL framework, the set of distinct label
names is sourced from an open domain. The server lacks
detailed length information on the set, making it challeng-
ing to directly encode the label names properly for secure
aggregation. To address this, we propose to locally encode
the unique label names into Invertible Bloom Lookup Ta-
bles (IBLT) [11] data structure, a randomized data struc-
ture efficient in storing key-value pairs within an open do-
main. IBLT is a bloom filter-type linear data structure that
supports the efficient listing of inserted elements and their
precise counts, with table size scaling linearly with unique
keys. IBLT sketches are amenable to linear summation, thus
compatible with secure aggregation protocols.

In the GPT-FL framework’s IBLT integration, each
client locally encodes its distinct label names into IBLT and
transmits it to the server. The server performs linear ag-
gregation of these IBLTs through a secure multi-party com-
putation protocol, subsequently decoding the aggregated ta-
ble to obtain total label name counts without revealing indi-
vidual label information. By leveraging the collective label
name histogram, the server determines the union of distinct
label names for data generation, maintaining the privacy
of client-specific details. This approach finds validation in
prior research [10], where IBLT demonstrated its efficacy in
addressing private heavy hitters within federated analytics.

To better demonstrate the integration of IBLT in
GPT-FL, we provide an illustrated experiment as an exam-
ple. The experiment is conducted with the TensorFlow Fed-
erated IBLT API [38]. We partition the CIFAR-10 dataset
heterogeneously amongst 100 clients using the Dirichlet
distribution DirK(ω) with ω equal to 0.1. As the server
does not know the length of the dataset initially, we set the
capacity of the IBLT sketch to 50, which is much larger than
the total number of unique labels inside CIFAR-10 (i.e., 10).
Each client encodes its unique set of label names into IBLT
and sends it to the server. The server would aggregate them
via the secure aggregation protocol, which means the server
can not access the individual IBLT but only knows the sum-
mation of IBLTs. After decoding the aggregated IBLT, the
server only gets the following information:

Number of clients participated: 100
Discovered label names and counts:
{’dog’: 49, ’automobile’: 59, ’bird’: 50,

’horse’: 32, ’cat’: 46, ’frog’: 27,
’deer’: 44, ’truck’: 37, ’airplane’:
50, ’ship’: 35}

Table 6. Accuracy performance comparison between locally fine-
tune in isolation and GPT-FL with FedAvg.

Dataset Locally Fine-tune in Isolation GPT-FL w/ FedAvg

CIFAR-100 35.53% 47.80%

Google Speech Command 23.00% 81.90%

The decode information only contains the number of par-
ticipated clients and the histogram of the label name, which
the server could infer the union of distinct label names for
data generation. For example, the notation ”’dog’:49” de-
notes there are 49 clients who include the label ’dog’ within
their local datasets, but the server lacks knowledge regard-
ing the specific client identities associated with this ’dog’
label in the localized data. It is crucial to emphasize that
the server remains unable to access specific client details,
such as the labels held by individual clients. As suggested
in the previous work [10, 38], this algorithm could be fur-
ther enhanced by adding a differential privacy mechanism.
In conclusion, this IBLT-based algorithm will allow parties
to jointly compute the union of unique label names without
revealing individual label information, addressing concerns
about privacy and confidentiality.

6.2. Evaluating Client-isolated Fine-tuning against
GPT-FL Performance

To underscore the effectiveness of federation in fine-tuning,
we present an ablation study comparing the performance of
local fine-tuning in isolation against FL fine-tuning. This
study utilizes the Google Speech Command and CIFAR-
100 datasets. We partition the CIFAR-10 dataset using the
Dirichlet distribution DirK(ω) with ω equal to 0.1 into 100
clients, and partition the Google Speech Command dataset
over speaker IDs into 2,618 clients. We select the VGG19
model for CIFAR-100 dataset to align with Table 2. In the
isolated fine-tuning scenario, we select 10 clients at ran-
dom, allowing each to fine-tune the synthetic-data-based
downstream model independently with its local data for 500
epochs. The average accuracy from these clients is then
computed. For the GPT-FL setup, we maintain the exper-
imental parameters as per the setups described in Table 4.
The results of these experiments are summarized in Table 6.

The results show that fine-tuning in isolation at the
client level yields significantly lower accuracy compared
to the GPT-FL approach using FedAvg, which fine-tunes

4[28, 46] only reported results on ConvNet. We tested these two meth-
ods on VGG19 but they are not converged.



synthetic-data-based downstream model models federa-
tively using private data. The primary reason for this dis-
parity is the limited amount and skewed label distribution of
the local data available to each client, which is insufficient
for individually tuning the model to achieve optimal per-
formance. These findings clearly demonstrate the value of
federated learning in fine-tuning, especially given the limi-
tations of local data in terms of volume and diversity.

6.3. Evaluation of GPT-FL on Domain-Specific
Tasks

In this section, we aim to comprehensively assess the ef-
fectiveness of the GPT-FL framework on domain-specific
tasks that have limited overlap with the training data of the
Stable Diffusion generator used in this study. All experi-
ments in this section utilize the ResNet-18 model.

Two specific datasets, namely, COVID-19 X-rays [8] and
Food101 [6], are chosen for evaluation in this section. The
COVID-19 X-rays dataset is a publicly available collection
of chest X-ray images with varying dimensions. It com-
prises three classes: COVID-19 X-ray images, normal X-
ray images, and viral pneumonia X-ray images. As the
database is updated randomly, we follow the previous FL
work [19] and select the COVIDx-8A version in this pa-
per. The dataset contains 5,585 training images and 400 test
images. We partition the dataset into 20 clients using the
Dirichlet distribution DirK(ω) with ω equal to 0.1. It’s im-
portant to note that during prompt generation, we observed
that the latest version of ChatGPT does not support con-
tent generation related to medical imagery. Consequently,
we utilize label names as prompts to guide the generative
model for synthetic X-ray image generation. As an illustra-
tion, one of the queries used to instruct ChatGPT to generate
the prompt is as follows:

Q: Create a prompt to a chest
x-ray with Viral Pneumonia

A: I’m unable to generate images
of chest X-rays with viral
pneumonia as it does not
align with our content
policy. This policy ensures
the responsible and ethical
use of AI, especially in
sensitive areas like medical
imagery. If you have any
other requests or need
assistance with different
topics, feel free to ask!

The Food101 dataset contains 101 food categories with
101,000 images in total. Each class has 750 training im-
ages and 250 test images. The dataset is designed to contain
some amount of noise in the training images, which comes
mostly in the form of intense colors and sometimes wrong

labels. All images were rescaled to have a maximum side
length of 512 pixels. We partition the dataset into 50 clients
using the Dirichlet distribution DirK(ω) with ω equal to
0.1. We use the same pipeline to generate the synthetic data
for this dataset as we describe in Section 3.

Table 7. Accuracy performance comparison between generated
downstream model, standard federated learning and GPT-FL on
domain-specific tasks.

Dataset 3x Synthetic FedAvg GPT-FL w/ FedAvg

COVID-19 X-rays 37.71% 78.36% 94.65%

Food101 35.14% 43.25% 70.57%

The experiment results are shown in Table 7. In the ex-
periments, we randomly sample 10 clients from 20 clients
for the COVID-19 X-rays dataset and randomly sample 10
clients from 50 clients for the Food101 dataset. The results
demonstrate that even though the synthetic data has signifi-
cant differences compared to actual data, GPT-FL still pro-
vides performance benefits compared to exclusive reliance
on FL, which aligns with our results in the main paper.

6.4. Experiment Settings
6.4.1. Computing Infrastructure
All experiments are conducted via CPU/GPU simulation.
The simulation experiments are performed on two comput-
ing servers with ten GPUs. The server is equipped with
AMD EPYC 7502 32-Core Processor and 1024G memory.
The GPU is NVIDIA RTX A100.

6.4.2. Datasets and Models
CIFAR-10. The CIFAR-10 dataset [18] consists of 60,000
32x32 color images in 10 classes. It has 50,000 train-
ing images and 10,000 test images. We normalize the im-
ages using the mean and standard deviation of the dataset.
For evaluation, we use ConvNet [28], ResNet18 [12], and
VGG19 [35] models. Following the previous work [28], the
ConvNet has 3 layers with a hidden dimension of 128. The
dataset is partitioned using a Dirichlet distribution to em-
ulate a realistic non-iid distribution, following prior work
[7].

CIFAR-100. The CIFAR-100 dataset [18] is similar to
CIFAR-10 but contains 100 classes, with 600 images per
class. We apply the same partitioning method as CIFAR-
10. For evaluation, we use ConvNet [28], ResNet50 [12],
and VGG19 [35] models. The ConvNet architecture is the
same as used for CIFAR-10.

Oxford Flowers 102. The Oxford Flowers 102 [27]
(Flowers102) dataset consists of 102 types of flowers, with
each type containing between 40 and 258 images. The im-



ages exhibit significant variations in scale, angle, and light-
ing. Some flower categories also have substantial variations
within the category and contain several closely related cat-
egories. It is divided into training, validation, and test sets.
The training and validation sets consist of 10 images per
class, totaling 1020 images each. The test set contains the
remaining 6149 images, with a minimum of 20 images per
class. We resize all images to 224x224 pixels for consis-
tency. For evaluation, we use ConvNet [28], ResNet18 [12],
and VGG19 [35] models. We apply the same partitioning
method as CIFAR-10. The ConvNet architecture is the same
as used for CIFAR-10.

Google Command. The Google Command dataset [40]
comprises 105,829 audio recordings collected from 2,618
speakers. The training set includes recordings from 2,112
speakers, the validation set includes 256 speakers, and the
test set includes 250 speakers. It consists of 35 com-
mon words from everyday vocabulary, such as ”Yes,” ”No,”
”Up,” and ”Down.” For evaluation, we use a lightweight
model based on related work [45] for a 35-class keyword
spotting task, where the model consists of two convolution
layers followed by one Gated Recurrent Units (GRU) layer
and an average pooling layer is connected to the GRU out-
put, which is then fed through two dense layers to generate
the predictions. In this work, to pre-process the raw audio
data, a sequence of overlapping Hamming windows is ap-
plied to the raw speech signal with a time shift of 10 ms. We
calculate the discrete Fourier transform (DFT) with a frame
length of 1,024 and compute the Mel-spectrogram with a di-
mension of 128. The Mel-spectrogram is used for training
the keyword spotting model. We follow [45] for this setup.

ESC-50. The ESC-50 dataset [29] consists of 2000
environmental audio recordings suitable for environmental
sound classification. The dataset contains 5-second-long
recordings categorized into 50 semantical classes, with 40
examples per class. These classes are loosely arranged into
five major categories: animals, natural soundscapes & wa-
ter sounds, human & non-speech sounds, interior/domes-
tic sounds, and exterior/urban noises. We employ the same
data pre-processing method and model architecture as used
in the Google Command dataset.

6.4.3. Hyperparameter Settings
To determine the optimal hyperparameters, we conducted a
search within specified ranges. The client learning rate was
searched in the range of 1.00E-09 to 1.00E-00, the server
learning rate in the range of 1.00E-09 to 1.00E-00, weight
decay in the range of 0.1 to 0.9, input batch size in the range
of 8 to 256, and epoch number for centralized training in
the range of 100 to 500. The hyperparameter settings for
the public data-based methods and standard FL methods in
Table 2 followed the settings from the previous work [7].
The specific hyperparameter selections for the other exper-
iments are provided below.

Hyperparameter Selection in Table 2. The detailed ex-
periment setups for Table 2 are listed in Table 8, Table 9,
Table 10 and Table 11. For the experiments related to Fed-
Gen5 and DynaFed6, we evaluate them with their official
implementation code on GitHub.

Table 8. Experimental setup details of GPT-FL with VGG19 in
Table 2

CIFAR-10 CIFAR-100 Flowers102
Local Epoch 1 1 1
Communication Rounds 500 500 500
Cohort Size 10 10 50
Batch Size 32 32 32

Client Learning Rate High Data Heterogeneity 1.00E-07 1.00E-06 5.00E-03
Low Data Heterogeneity 1.00E-07 1.00E-06 5.00E-03

Optimizer SGD SGD SGD
Momentum 0.9 0.9 0.9
Weight Decay 5.00E-04 5.00E-04 5.00E-04

Table 9. Experimental setup details of GPT-FL with ConvNet in
Table 2

CIFAR-10 CIFAR-100 Flowers102
Local Epoch 1 1 1
Communication Rounds 500 500 500
Cohort Size 10 10 50
Batch Size 32 32 32

Client Learning Rate High Data Heterogeneity 2.00E-07 1.00E-04 1.00E-04
Low Data Heterogeneity 5.00E-06 1.00E-04 5.00E-03

Optimizer AdamW AdamW SGD
Betas (0.9, 0.999) (0.9, 0.999) N/A
Eps 1.00E-08 1.00E-08 N/A
Weight Decay 5.00E-04 5.00E-04 5.00E-04

Table 10. Experimental setup details of FedGen with ConvNet in
Table 2

CIFAR-10 CIFAR-100 Flowers102
Local Epoch 1 5 5
Communication Rounds 500 500 500
Cohort Size 10 10 50
Batch Size 32 32 32
Generator Batch Size 32 32 32

Client Learning Rate High Data Heterogeneity 1.00E-02 1.00E-02 1.00E-02
Low Data Heterogeneity 1.00E-02 1.00E-02 1.00E-02

Ensemble Learning Rate 1.00E-04 1.00E-04 1.00E-04
Personal Learning Rate 1.00E-02 1.00E-02 1.00E-02
Optimizer Adam Adam Adam
Betas (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Eps 1.00E-08 1.00E-08 1.00E-08
Weight Decay 1.00E-02 1.00E-02 1.00E-02

Table 11. Experimental setup details of DynaFed with ConvNet in
Table 2

CIFAR-10 CIFAR-100 Flowers102
Local Epoch 1 1 1
Communication Rounds 500 500 500
Cohort Size 10 10 50
Batch Size 32 32 32
Synthetic Images Learning Rate 5.00E-02 5.00E-02 5.00E-02
Distill Interval 1 1 1
Distill Iteration 20 8 20
Distill Step 3000 200 500
Distill Learning Rate 1.00E-04 1.00E-04 1.00E-04

Client Learning Rate High Data Heterogeneity 1.00E-02 1.00E-02 1.00E-02
Low Data Heterogeneity 1.00E-02 1.00E-02 1.00E-02

Ensemble Learning Rate 1.00E-04 1.00E-04 1.00E-04
Personal Learning Rate 1.00E-02 1.00E-02 1.00E-02
Optimizer Adam Adam Adam
Betas (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Eps 1.00E-08 1.00E-08 1.00E-08
Weight Decay 1.00E-02 1.00E-02 1.00E-02

Hyperparameter Selection in Table 3 and Table 4. For
the centralized training in Table 3 and Table 4, we used

5FedGen: https://github.com/zhuangdizhu/FedGen
6DynaFed: https://github.com/pipilurj/DynaFed/tree/main



the following hyperparameter settings. For image data, the
batch size was set to 32, and the optimizer was AdamW
with weight decay set to 0.9 and cosine annealing learn-
ing rate decay. The initial learning rate was 1.00E-04 for
CIFAR-10/CIFAR-100 and 3.00E-04 for Flowers102. For
audio data, the batch size was set to 64, and the optimizer
was Adam with weight decay set to 1.00E-04. The initial
learning rate was 5.00E-05 for both datasets.

For the standard FL training in Table 3 and Table 4, the
hyperparameter settings are as follows. For image data, the
batch size is set to 32, and SGD is used as the local opti-
mizer with weight decay set to 5.00E-04. When using Fe-
dOpt as the server aggregator, Adam is chosen as the server
optimizer. Specifically, for the CIFAR-10 dataset, the local
learning rate is set to 1.00E-01 with FedAvg as the server
aggregator, and for FedOpt as the server aggregator, the
local learning rate is set to 1.00E-02 and the server learn-
ing rate is set to 1.00E-03. For the CIFAR-100 dataset, the
local learning rate is set to 1.00E-01 with FedAvg as the
server aggregator, and for FedOpt as the server aggregator,
both the local and server learning rates are set to 1.00E-01.
For the Flowers102 dataset, the local learning rate is set to
1.00E-01 with FedAvg as the server aggregator, and for Fe-
dOpt as the server aggregator, the local learning rate is set
to 1.00E-02 and the server learning rate is set to 1.00E-02.
For all audio data, the experimental settings strictly follow
the FedAudio benchmark [45].

For the GPT-FL training in Table 3 and Table 4, the hy-
perparameter settings are as follows. For image data, the
batch size is set to 32, and SGD is used as the local opti-
mizer with weight decay set to 5.00E-04. When using Fe-
dOpt as the server aggregator, Adam is chosen as the server
optimizer. Specifically, for the CIFAR-10 dataset, the local
learning rate is set to 5.00E-04 with FedAvg as the server
aggregator, and for FedOpt as the server aggregator, the lo-
cal learning rate is set to 3.00E-04 and the server learning
rate is set to 7.00E-04. For the CIFAR-100 dataset, the local
learning rate is set to 1.00E-04 with FedAvg as the server
aggregator, and for FedOpt as the server aggregator, the lo-
cal learning rate is set to 5.00E-04 and the server learning
rate is set to 1.00E-03. For the Flowers102 dataset, the local
learning rate is set to 5.00E-03 with FedAvg as the server
aggregator, and for FedOpt as the server aggregator, the lo-
cal learning rate is set to 1.00E-04 and the server learning
rate is set to 1.00E-04. For audio data, the batch size is set
to 16, and SGD is used as the local optimizer with weight
decay set to 5.00E-04. When using FedOpt as the server ag-
gregator, Adam is chosen as the server optimizer. We set the
local learning rate to 5.00E-02 with FedAvg as the server
aggregator, and for FedOpt as the server aggregator, the lo-
cal learning rate is set to 1.00E-03 and the server learning
rate is set to 5.00E-04 for both two datasets.

Hyperparameter Selection in Table 5. For the cen-

tralized training in Table 5, the hyperparameter selection
is follows. For all image data, we set the batch size to 32,
and choose AdamW [24] as the optimizer with weight de-
cay equal to 0.9 and cosine annealing learning rate decay.
For the CIFAR-10 dataset, we used an initial learning rate
of 8.00E-06; for the CIFAR-100 dataset, we used an initial
learning rate of 5.00E-06; for the Flowers102 dataset, we
used an initial learning rate of 2.00E-05.

For the standard FL training in Table 5, we use the hyper-
parameter setting as follows. For all image data, we set the
batch size to 32, and choose SGD as the local optimizer with
weight decay equal to 5.00E-04. With FedOpt as the server
aggregator, we choose Adam as the server optimizer. For
the CIFAR-10 dataset, we choose the local learning rate as
1.00E-01 with FedAvg as the server aggregator and choose
the local learning rate as 1.00E-03 and the server learning
rate as 1.00E-03 with FedOpt as the server aggregator. For
the CIFAR-100 dataset, we choose the local learning rate as
1.00E-02 with FedAvg as the server aggregator and choose
the local learning rate as 5.00E-03 and the server learning
rate as 7.00E-03 with FedOpt as the server aggregator. For
the Flowers102 dataset, we choose the local learning rate as
1.00E-02 with FedAvg as the server aggregator and choose
the local learning rate as 1.00E-04 and the server learning
rate as 5.00E-04 with FedOpt as the server aggregator.

For GPT-FL training in Table 5, we use the hyperpa-
rameter setting as follows. For all image data, we set the
batch size to 32, and choose SGD as the local optimizer
with weight decay equal to 5.00E-04. With FedOpt as the
server aggregator, we choose Adam as the server optimizer.
For CIFAR-10 dataset, we choose the local learning rate as
1.00E-07 with FedAvg as the server aggregator and choose
the local learning rate as 1.00E-07 and the server learn-
ing rate as 1.00E-05 with FedOpt as the server aggrega-
tor. For CIFAR-100 dataset, we choose the local learning
rate as 1.00E-04 with FedAvg as the server aggregator and
choose the local learning rate as 1.00E-04 and the server
learning rate as 1.00E-05 with FedOpt as server aggregator.
For Flowers102 dataset, we choose the local learning rate as
1.00E-02 with FedAvg as the server aggregator and choose
the local learning rate as 1.00E-04 and the server learning
rate as 1.00E-04 with FedOpt as the server aggregator.

6.5. Quality of the Generated Synthetic Data
As shown in Table 2, GPT-FL outperforms both generated
data-based approaches FedGen and DynaFed significantly
across all experimental conditions. One plausible reason
for this could be associated with the quality of the gen-
erated synthetic data. Specifically, both FedGen and Dy-
naFed rely on training MLP-based generator networks to
ensemble user information in a data-free manner, where
the lightweight generator may have limitations in gener-
ating high-fidelity data. The results of Flowers102 pro-



vide empirical evidence that such a lightweight generator
has constrained capabilities in synthesizing image output
on input images with larger sizes, making it challenging for
the global model to converge. To illustrate this, Figure 8
and Figure 9 illustrate the synthetic images generated by
GPT-FL and DynaFed, respectively. As shown, the learned
generator of DynaFed fails to generate high-fidelity data as
in GPT-FL.



Figure 8. Synthetic CIFAR-10 data by GPT-FL. Figure 9. Synthetic CIFAR-10 data by DynaFed.


