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Figure 1. Human Pose Representation. (Left) HumanML3D
features. (Right) 3D joint positions.

A. Data Processing for Evaluation, Visualiza-
tion in 3D Plots and re-Training

This section details the data processing steps repeatedly per-
formed in our study. Specifically, we discuss the feature
transformation process necessary to convert the pose rep-
resentation of the HumanML3D [3] dataset back into 3D
coordinates for result evaluation and visualization in 3D
plots. Furthermore, we describe the adaptations made to
our model to work with real-time 3D joint position data.

A.1. Feature Transform
In our work, the feature transformation is a crucial step to
obtain the 3D joint positions from the pose representation
provided by the HumanML3D [3] dataset. This transforma-
tion is necessary because the dataset’s pose representation
includes various redundant features that must be processed
to isolate the 3D joint coordinates required for quantitative
evaluation of the model using the Mean Per Joint Position
Error (MPJPE) and for qualitative evaluation through vi-
sualization of the predicted sequences (see Section ?? and
supplementary video).

The pose representation in HumanML3D [3] consists of
a tuple of features including root angular velocity, root lin-
ear velocities, root height, local joints positions, velocities,
rotations, and binary foot contact features. Specifically, it
provides 263 features per body frame. To extract the 3D
joint positions, these features must be transformed because
they include information in root space that needs to be con-
verted into global coordinates.

Figure 2. Human-Robot Collaboration Experiment Setup &
Conceptual Zones of Presence Representation The first image
is a representation of our Experiment Setup described in section B,
taken in ROS. The second image is the real-time human pose esti-
mation used as input to our model. The third and fourth images are
conceptual representations of our predicted zones of presences, us-
ing the mean of the uncertainty features Uj,i as the radius around
joint x(j)i. The uncertainty factor ”Mode Divergence” described
in section ?? has proven to provide the best results in simulation.

The transformation process involves the following steps:
1. Recover Root Rotation and Position: The root ro-

tational velocities are extracted and integrated over time to
obtain the root rotation angles, which are then converted
into quaternions. Simultaneously, the root positions are re-
covered by integrating the root linear velocities.

2. Concatenate Rotations and Positions: The local
joint rotations and positions provided in the dataset are com-
bined with the root rotations. The combined rotations are
converted from quaternion representation to a continuous
6D rotation format.

3. Forward Kinematics: Using forward kinematics, the
combined rotations and positions are processed to obtain
the global 3D joint positions. This involves computing the
global position of each joint based on its local rotation and
position relative to the root and applying the root’s global
transformation.

A.2. Adaptation to 3D Joint Position Data

Due to the nature of our recorded motion capture data using
real-time pose estimation (see section B), the pose data we
have access to consists only of 3D joint positions. This re-
sults in a simplified feature representation of 96 features per
skeleton (32 joints × 3 coordinates), compared to the 263
features per body frame provided by the HumanML3D [3]
dataset. To address this discrepancy, we considered two po-



tential solutions:
1. Transformation to Original Feature Space: One

approach was to transform the 3D joint positions back to
the original feature space of 263 features per frame. How-
ever, this transformation involves estimating several param-
eters that are not directly observable from the joint positions
alone, which would likely introduce inaccuracies into the
data and could negatively impact the model’s performance.
For instance, approximating the root angular velocity can be
complex, and computing local rotations typically requires
sophisticated methods like inverse kinematics (IK).

2. Retraining the Model: Instead of transforming the
data, we opted to retrain the model using the simplified fea-
ture representation of 3D joint positions. The only modi-
fications involved adjusting the dimensions of the encoder
and decoder. By training directly on the motion sequences
represented as 3D joint positions, we avoid the inaccura-
cies associated with the transformation process and ensure
that the model is trained on the most accurate representa-
tion of our data. However, the redundant pose representa-
tion can be useful for learning spatio-temporal motion pat-
terns, and this lower-dimensional representation might re-
sult in a slight loss of information, potentially decreasing
the model’s performance. Another consideration is that the
pose estimation data we access through pose estimation in-
cludes 32 joints, whereas the HumanML3D [3] dataset uses
only 22 joints to represent the human body. Therefore, we
need to filter out the 10 additional joints and predict motion
sequences using only the 22 joints per frame.

We chose the second approach and retrained our model
on the 3D joint position feature space. This retrained model
was then used for the experiments in our lab, allowing us to
work directly with the data collected through our real-time
pose estimation system.

B. Experiment Setup
We provide details about our experimental setup used in our
lab to predict the future motions of a human worker in a
Human-Robot Collaborative (HRC) Workspace.

Physical Setup: Our collaborative workspace, as shown
in Fig. 2, consists of a duAro1 Kawasaki robot and mul-
tiple desks where both the human and the robot can place
and pass objects. The workspace is monitored by multiple
Azure Kinect RGB-D cameras. All sensor data, along with
the command signals for controlling the robot, are central-
ized in a ROS (Robot Operating System) setup. April Tags
are used for calibration to ensure all spatial data (including
the real-time position of the robot and data from the sensors)
is aligned within the same reference frame.

Motion Tracking: Human Pose Estimation is per-
formed in real-time to gather skeleton data and track the
human worker within the HRC workspace using the Azure
Kinect Body Tracking SDK. The skeleton data is transmit-

ted to the ROS system via the Azure Kinect ROS driver,
transformed into the robot’s base frame, and then recorded
in MarkerArray topics. These motion sequences are subse-
quently fed into our trained model.

Textual Actions: To leverage the benefits of our multi-
modal approach, a set of predefined Human-Robot collabo-
rative actions is mapped to specific keys on a keyboard. This
keyboard can be operated by either the human worker or
an external observer who can also provide detailed textual
descriptions of the actions being performed. If the model
is not given textual information between actions, it relies
solely on motion sequence data. As demonstrated in our
Motion & Text ablation study in section C, our model can
perform short-term predictions without contextual informa-
tion. However, as described in the limitation section ??,
we are aware that this reliance on textual descriptions is not
ideal for real-time Human-Robot Collaboration, as it can be
burdensome and not every action is scripted in advance.

C. Additional Experimental Results
We present qualitative results by comparing our model
to state-of-the-art Text2Motion methods such as Mo-
tionGPT [5] and MDM [7]. The comparisons are show-
cased in the video appendix, where our model’s predictions
are visualized against ground truth motion sequences. In ev-
ery sequence, our model outperforms the baselines in terms
of proximity to the ground truth.

Additionally, we visualize our predictions using meshes
created with SMPL [6] and rendered in Blender. These vi-
sualizations transform the skeleton motions into human-like
meshes performing the same actions, providing a clearer
and more intuitive understanding of the predicted motions.

C.1. Video Representation
In the video appendix, we compare our model’s predictions
to those of MotionGPT [5] and MDM [7] on certain spe-
cific actions. The videos allow for a visual assessment of
the proximity of the predicted sequences to the ground truth
motion. Our model shows better performance in maintain-
ing proximity to the ground truth. Even when the predic-
tions differ from the ground truth, our model’s predicted
actions align with the intended textual actions, while the
baseline models tend to diverge. Even when our predicted
sequences differ from the ground truth, the actions corre-
spond accurately to the textual descriptions, whereas the
other baselines quickly diverge from the ground truth.

C.2. Path Trajectory Following
In Fig. 3, we also evaluate the trajectory following capabil-
ity of our model through stop-motion images. These im-
ages track the motion sequences with faded colors for early
frames and progressively darker colors for later frames. Ad-
ditionally, a trajectory path projecting the root joint position



Model NPSS MPJPE (mm)

0-1s 1-2s 2-4s 1s 2s 3s 4s 5s

MDM (re-trained) 0.059 0.064 0.172 205.5 385.5 551.3 692.0 791.9
MDMP (Ours) 0.034 0.043 0.132 186.7 341.8 474.8 592.5 669.8

Table 1. Comparison of NPSS & MPJPE (mm) on HumanML3D.

Method R-Precision ↑ FID ↓ Diversity →

Top-1 Top-2 Top-3

Real Motion 0.511 ±0.003 0.703 ±0.003 0.797 ±0.002 0.002 ±0.000 9.503 ±0.065

T2M [2] 0.457 ±0.002 0.639 ±0.003 0.740 ±0.003 1.067 ±0.002 9.188 ±0.002

MDM [7] 0.320 ±0.005 0.498 ±0.004 0.611 ±0.007 0.544 ±0.044 9.559 ±0.086

MotionGPT [5] 0.492 ±0.003 0.681 ±0.003 0.778 ±0.002 0.232 ±0.008 9.528 ±0.071
MoMask [4] 0.521 ±0.002 0.713 ±0.002 0.807 ±0.002 0.045 ±0.002 —

Our Method 0.445 ±0.002 0.692 ±0.006 0.775 ±0.005 0.437 ±0.698 8.335 ±0.025

Table 2. Comparison of our method with state-of-the-art text-to-motion models on the HumanML3D dataset. Metrics reported are R-
Precision (higher is better), FID (lower is better), and Diversity (closer to Real Motion is better).

on the XZ-plane is included to precisely follow the pre-
dicted trajectory. This study further confirms our model’s
ability to accurately predict motion sequences that follow
precise trajectories over long-term durations.

C.3. Additional Uncertainty Qualitative Compari-
son

In Figs. 4, 5, 6, and 7, we present additional results of our
Uncertainty Parameters for visual comparison and evalua-
tion. As shown in these figures, the ”Mode Divergence”
index is the only one that exhibits a notable increase over
time, correlating closely with the error, particularly when
the divergence between the prediction and ground truth be-
comes pronounced (see Figs. 4 and 7). In contrast, the
”Predicted Variance” shows less temporal variation, while
the ”Mean Fluctuations” appear somewhat more unstable.
These findings align with our previous analysis using the
Sparsification Plot in Fig. ??.

C.4. Additional Accuracy Quantitative Compari-
son

Table 1 presents additional comparative results between
our method and the retrained MDM [7], evaluated using
NPSS [1] and MPJPE metrics. These results further validate
our contributions, highlighting improved accuracy, particu-
larly in longer-term predictions.

To fairly benchmark our method against Text2Motion
baselines, despite our distinct motion-conditioned frame-
work, we evaluated our model using generic metrics (R-
Precision, Diversity, and FID) and present the results in Ta-
ble 2.

We argue that our lower R-Precision results compared
to the latest benchmarks (MoMask [4] and MotionGPT [5])

reflects our model’s prioritization of initial motion condi-
tioning over textual alignment, confirming insights from our
first ablation study (section ??). Similarly, reduced Diver-
sity arises naturally from constraining motions to coherent
continuations of initial segments, which is advantageous in
Human-Robot Collaboration settings where accuracy and
confidence are prioritized over variability.

Finally, the Frechet Inception Distance (FID) metric is
intended to evaluate the overall quality of generated mo-
tions by measuring the distributional difference between
high-level features of the generated motions and those of
real motions. We argue that as described by Guo et al. [2],
the pretrained motion feature extractor used for computing
FID was trained using a contrastive loss to produce ge-
ometrically close feature vectors for matched text-motion
pairs. Hence, the motion encoder is specifically optimized
for motions conditioned solely on text descriptions and may
not accurately capture the features of motions generated by
models conditioned on both text and an initial motion seg-
ment (motion prequel).



Figure 3. Qualitative Comparisons on Path Following. Ground-truth in red; Predictions in blue



Figure 4. Qualitative Comparisons on Uncertainty Parameters. Textual Prompt: ”a person is jogging back and forth from where he has
standing”; Ground-truth in red; Predictions in blue

Figure 5. Qualitative Comparisons on Uncertainty Parameters. Textual Prompt: ”a person walks in a circle, clockwise.”; Ground-truth
in red; Predictions in blue



Figure 6. Qualitative Comparisons on Uncertainty Parameters. Textual Prompt: ”a person walks around in a circle.”; Ground-truth in
red; Predictions in blue

Figure 7. Qualitative Comparisons on Uncertainty Parameters. Textual Prompt: ”a person is doing a acrobatic dance.”; Ground-truth
in red; Predictions in blue
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