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Supplementary Material

1. Preliminaries: Conditional Sampling from
Diffusion Model

We describe the diffusion models from which we formu-
late conditional diffusion to generate adaptive motions with
precise control. Diffusion models have shown remarkable
performance in learning data distributions and effectively
learning or sampling from conditional distributions. These
models consist of two processes: a forward diffusion pro-
cess and a reverse process. Denoting p0(x0) as the original
data distribution, the forward process injects i.i.d. Gaussian
noise to a data distribution xt = x0+σtϵ with ϵ ∼ N (0, I),
where x0 ∈ X is an instance within the dataset X and σt

monotonically increases with respect to time t ∈ [0, T ].
In the reverse process, the model generates data samples
from pure Gaussian noise by recursively sampling from a
denoising model Dθ. The conditional denoising model Dθ

depends on time t and the additional feature c in the input
data. We use reconstruction loss during training and directly
learn to predict the original data x0:

L = Ex0,t,c∥Dθ(xt, t, c)− x0∥1. (1)

The trained diffusion models can flexibly generate output
satisfying the user-specified condition y with an appropriate
guidance function. From the Bayes’ rule, the conditional
score can be calculated as follows:

∇xt
log p(xt|y) = ∇xt

log p(xt) +∇xt
log p(y|xt). (2)

The first term from the right side can be obtained through a
pre-trained denoising model Dθ, while the second term can
be acquired by the gradient of an analytic guidance function
G(xt,y). The guidance function evaluates how well the
diffusion sample x satisfies the given condition y, and its
gradient is calculated as −∇xG(xt,y).

However, the diffusion sample xt inherently contains ad-
ditive noise, and simply computing the gradient of a func-
tion based on xt can result in inaccurate gradients. DPS [2]
proposes a formulation to find a more meaningful sam-
ple point x̂t to incorporate the gradient ∇xt log p(y|xt) ≃
∇xt

log p(y|x̂t). We can additionally adopt Monte Carlo
sampling in order to update the guidance function G more
accurately [6]. The modified estimate of the guidance func-
tion GMC is computed as follows:

GMC(xt,y) = − log

(
1

n

n∑
i=1

exp(−G(x(i),y))

)
, (3)

where n is the number of the samples. And x(i) are i.i.d.
samples from N (x̂t, r

2
t I), where rt = σt/

√
1 + (σt)2.

We utilize the guidance sampling method to design an an-
alytic function that satisfies the given constraints, enabling
precise control of the generation process. For the main pa-
per, we simply write G(x,y) to refer to Eq. 3.

2. Further Details
2.1. Implementation Details

As stated in the paper, our diffusion network integrates the
ControlNet [9] structure into the U-Net architecture pro-
posed in [4]. Our stage1, key joint diffusion model features
a lighter architecture with fewer diffusion steps compared
to the Stage 2, full-body diffusion model. In the key joint
diffusion model, the latent dimension of each block in the
U-Net is set to 64, while in the full-body diffusion model, it
is set to 256. Also, in Stage 1, we set the diffusion timestep
T as 100, whereas in Stage 2, we set T as 1000. More hy-
perparameters are presented in Table 1.

For the object reaching scenario, we set λ1 = 10, λ2 =
100, λ3 = 20 for calculating the guidance function during
the sampling stage 1. Similarly, for the rock climbing sce-
nario, we set λ1 = 20, λ2 = 20, λ3 = 3. For the contact
aware motion generation scenario, we set λ1 = 0, λ2 =
1, λ3 = 0. Lastly, for the sitting with suggested contact
points scenario, we set λ1 = 10, λ2 = 20, λ3 = 0.

The number of Monte Carlo sampling iterations n is set
to 5 to achieve more accurate gradients.

Hyperparameter Stage 1 Stage 2

Training iterations 0.3M 1M
Learning rate 1e-4 1e-4

Optimizer Adam W Adam W
Weight decay 1e-2 1e-2

Batch size 64 64
Channels dim 64 256

Channel multipliers [2, 2, 2, 2] [2, 2, 2, 2]
Variance scheduler Cosine [5] Cosine [5]

Diffusion steps 100 1000
Diffusion variance β̃ = 1−αt−1

1−αt
βt β̃ = 1−αt−1

1−αt
βt

EMA weight (β) 0.9999 0.9999

Table 1. Hyperparameters of each model

2.2. Bounding Box Estimation

We constructed bounding boxes, particularly for the reach-
ing an object scenario. To design an upper bounding box,
we first connected the joint positions of both shoulders and
projected the resulting vector onto a plane to define one axis
of the upper bounding box. We set this vector as the direc-
tion of one axis, thereby defining the upper body bound-
ing box as the minimal box containing the vertices of the



upper body. Similarly, we connected the joint positions of
both feet and utilized the resulting vector as one axis of the
lower bounding box, establishing the lower bounding box
for the lower body. We predict the shape of the bounding
box for each frame based on the positions and 6 DoF poses
of the key joints predicted in stage 1, along with the shape
parameter β.

3. Dataset Description
In the reaching an object scenario (Task 1), we utilized the
CIRCLE dataset [1]. From the whole dataset, we specif-
ically used the reaching data from the dataset. We aug-
mented the data by reversing the left-hand reaching se-
quences into right-hand sequences, resulting in a total of
3138 right-hand reaching sequences. Additionally, we pro-
cessed the data to identify the goal point where the reaching
hand moved farthest from its initial position. For the ran-
dom split experimental setup, 2510 data samples were allo-
cated for training. For the scene split experimental setup, all
environments except the media room and closet were desig-
nated as the training set, resulting in 2205 data samples for
training.

For the rock climbing scenario (Task 2), we utilize the
dataset from [8], where pose information is accompanied
by synchronized RGB images. With this additional infor-
mation, we manually selected motion sequences starting
from when the subject detached from the climbing rock un-
til when they securely reached the climbing rock again, re-
sulting in 156 data samples. Similarly, for the sitting with
suggested contact points scenario (Task 4), we utilized the
dataset from [10]. We manually segmented 160 data sam-
ples starting from a stable initial point until the subject sat
on the chair.

For the contact aware motion generation scenario (Task
3), we utilized the dataset from [3]. We utilized smplx seg-
mentation to convert vertices-level contact into joint-level
contact information. If a point within the segmentation of
the corresponding part is marked as a contact, the associated
joint is designated as a contact joint. We observed that con-
tact usually occurs at the hands and feet, therefore, vertex-
level contact was replaced with joint-level contact for the
two hands and two feet.

Subsequently, we normalized the entire dataset by set-
ting the face direction at the initial frame to the +z axis and
the initial root position as the origin.

4. Additional Task (Task 4): Sitting with Sug-
gested Contact Points

We focus on generating motions sitting on a chair, where
contact points on the chair are provided for both hands [10].
We collected 160 samples from the COUCH [10], with 128
sequences used for training. As before, the setting may

Method Success rate
(%)

Dist. to goal
(cm)

MJPE
(cm)

OmniControl [7] 43.7 16.72 14.02
Ours single-stage 31.2 22.10 15.08
Ours 71.8 10.98 12.84

Table 2. Quantitative evaluation on sitting with suggested contact
points scenario.

be subject to overfitting and our two-stage composition can
provide precise control in unseen conditions. We mark suc-
cess when the hand positions are within 10 cm of the speci-
fied contact points at the final sitting pose. This requirement
involves two goal conditions for both hands. Therefore both
hands are the key joint set of the task.

The scene contains only a chair without a complicated
structure and we omitted suggestive-path features and the
collision-avoidance guidance term. Our key joint diffu-
sion model still incorporates the trajectory-control guid-
ance, which is sufficient to flexibly adapt the motion se-
quences to the desired output.

Table 2 shows that our full pipeline outperforms the one-
stage pipeline in most of the metrics. Even in the rather
simple setting, the single-stage method suffers from over-
fitting, and the key joint trajectories serve a crucial role in
composing the motion with precise control.

5. Additional Results
We present additional qualitative results comparing with the
baseline for each task, namely the reaching an object sce-
nario (Figure 1), rock climbing scenario (Figure 2), and
sitting with suggested contact points scenario (Figure 3).
Additionally, we provide supplementary video containing
entire motion sequences. Please watch our supplementary
video for more results.
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Figure 1. Qualitative results on the reaching an object scenario.
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Figure 2. Qualitative results on the rock climbing scenario.
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Figure 3. Qualitative results on the sitting with suggested contact points scenario.
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