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A. Additional Details of Methodology

In Sec. 3 of our main paper, we presented the foundational
design of each key component in our HOI-Diff pipeline.
Here, we delve into an elaborate explanation of model archi-
tecture, learning objectives and additional details associated
with each crucial component.

A.1. Dual-branch diffusion model (DBDM)

The Communication Module (CM) in DBDM is based on
the cross attention mechanism. Formally,

f̃h = MLP(Attn(fhWQ,f
oWK ,foWV )), (8)

f̃o = MLP(Attn(foWQ,f
hWK ,fhWV )), (9)

where MLP(·) denotes fully-connected layers, Attn(·) is
the attention block [54], and WQ,WK ,WV are learned
projection matrices for query, key, and value, respectively.

The training objective of this full model is based on re-
construction loss

Lhoi = Et∼[1,T ]∥Mθ(xt, t, c)− x0∥22, (10)

where x0 is the ground truth of the HOI sequence.

A.2. Affordance prediction diffusion model
(APDM).

Model architecture. The affordance prediction diffusion
model comprises eight Transformer layers for the encoder
with a PointNet++ [38] to encode the object’s point clouds.
The training objective of this diffusion model is also based
on reconstruction loss

Laff = Et∼[1,T ]∥Aθ(yt, t,p,d)− y0∥22, (11)

where y0 is the ground-truth affordance data. p and d denote
object point cloud and text description (prompt), respectively.
Aθ represents the affordance prediction diffusion model.

Inferring object state with GPT-3.5-turbo in APDM. To
infer the state of an object, we directly leverage the strong
prior knowledge of large language models to derive the re-
sult. Specifically, we utilize the GPT-3.5-turbo [34] API by
inputting specific instructions, allowing it to infer the result
directly based on the input HOI text description. The prompt
template for instruction is shown in Figure 6.

A.3. Affordance-guided interaction correction.

During the inference stage, it’s found that the predicted ob-
ject contact positions may occasionally be inaccurately posi-
tioned, residing either inside or outside the object. To rectify
this, we implement post-processing steps that replace these
predicted contact points, denoted as yo

0 , with their nearest
neighbors from the object’s point clouds. This adjustment
aims to enhance the accuracy of the updated contact points,
aligning them more closely with their actual positions on the
object’s surface. However, employing these updated contact
points directly for contact constraints, particularly in the
absence of detailed human shape information, introduces
a new challenge. It can potentially lead to penetration is-
sues within the contact area while reconstructing the human
mesh in the final stage. To mitigate contact penetration, we
adopt a method that recalculates points at a specified dis-
tance outward, perpendicular to the normal, originating from
the object’s contact points. This process can formulated as:
ỹ0o = ŷo

0 + vin ∗d, where i ∈ {1, 2} indicates the ith object
contact points, vin denotes the normal vector at that point
and d = 0.05 is a contact distance threshold.

As for smoothness term, we formulate it as

Gsmo =

L−1∑
l=1

∥xo
0(l + 1)− xo

0(l)∥
2
, (12)

where xo
0(l) is the predicted 6DoF pose of the object in the

l-th frame.

Figure 6. Prompt template for inferring object state.



Algorithm 1 Affordance-guided Interaction Correction
Require: Input c = (d,p) consisting of a textual description d and

object point cloud p, HOI-Diff model Mθ, objective function
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12: end for
13: return xh
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B. Implementation Details
Both our DBDM and APDM are built on the Transformer
[54] architecture. Similar to MDM [51], we employ the
CLIP model to encode text prompts, adhering to a classifier-
free generation process. Our models are trained using
PyTorch [35] on 1 NVIDIA A5000 GPU. We set con-
trol strength of guidance as τ1 = 1, τ2 = 100, and Σt =
min(Σt, 0.01). Both the DBDM and APDM are trained on
the same data for 20k steps.

Both the DBDM and APDM architectures of HOI-Diff
are based on Transformers with 4 attention heads, a latent
dimension of 512, a dropout of 0.1, a feed-forward size of
1024, and the GeLU activation [15]. The number of learned
parameters for each model is stated in Table 4.

Our training setting involves 20k iterations for the DBDM
and 10k iterations for the APDM model. These iterations uti-
lize a batch size of 32 and employ the AdamW optimizer [30]
with a learning rate set at 10−4. We use T=1000 and N=500
diffusion steps in DBDM and APDM, respectively.

C. Additional Details of Baselines
• MDMfinetuned: We finetune MDM [51] on BEHAVE

dataset without considering the object motion.
• MDM*: We extend the original feature dimensions of

the input and output processing in MDM [51] from Dh

to Dh +Do, enabling support for HOIs sequences. The
model is trained from scratch on BEHAVE dataset [4].

• PriorMDM*: The proposed approach for dual-person mo-
tion generation employs paired fixed MDMs [51] per in-
dividual to ensure uniformity within generated human
motion distributions. This design leverages a singular
ComMDM to coordinate between the two branches of
fixed MDM instances, streamlining training and maintain-
ing consistency across generated motions. Given that both
branches are based on MDM that pretrained on human mo-
tion datasets, direct utilization of them for human-object in-

Figure 7. Effect of different total numbers of perturbations
in the whole denoising process. (a) Perturb one time in each
denoising step (in total T = 1000). (b) Perturb one time in first
T − 1 denoising steps, and repeatedly perturb 10 times in the final
denoising step. (c) Perturb one time in first T − 1 denoising steps,
and repeatedly perturb 100 times in the final denoising step.

teractions in our task is infeasible. We maintain one branch
dedicated to humans, leveraging pre-trained weights, while
adapting the input and output processing of another branch
specifically for generating object motion. Following this,
we fine-tune the human MDM branch while initiating the
learning of object motion from scratch within the object
branch. Eventually, we integrate ComMDM to facilitate
communication and coordination between these distinct
branches handling human and object interactions.

• InterDiff: InterDiff [61] is originally designed for a pre-
diction task rather than text-driven HOIs generation. To
tailor it to our task, we replace its Transformer encoder
with a CLIP encoder and modify its feature dimensions of
the input and output layers.

To ensure fair comparisons, all the above baselines as
well as our own models are all trained on BEHAVE and
OMOMO datasets for 20k steps.

D. Additional Details of Evaluation Metrics

For detailed information regarding metrics employed in hu-
man motion generation, including FID, R-Precision, and
Diversity, we refer readers to [13, 51] for comprehensive
understanding.

Contact Distance. Expanding on the concept of Contact
Distance, we utilize the chamfer distance metric to quantify
the closeness between human body joints and the object
surface. This computation leverages ground-truth affordance
data that includes human contact labels and object contact



points,

ContactDistance =
1

L

L∑
l

CD(x̂h
l , p̂l), (13)

where x̂h
l represents two human contact joints at the l-th

frame, indexed according to ground-truth contact labels.
Additionally, p̂l denotes two object contact points derived
from the object motion xo

l at frame l, also indexed based on
ground-truth information. CD denotes the chamfer distance.

Penetration Score. We followed the Li et al. [26] to com-
pute the penetration score (Pene), each vertex of the body
(Vi) is queried against the precomputed Signed Distance
Field (SDF) of the object. This process yields a correspond-
ing distance value for each vertex. The penetration score is
then formalized as:

Pene =
1

n

n∑
i=1

|min(di, 0)|, (14)

measured in centimeters (cm).
E. Inference Time
In Table 5, we provide the inference times for both base-
lines and our full method, including its key components. All
measurements were conducted using an NVIDIA A5000
GPU. Training an additional model for affordance informa-
tion and using classifier guidance for interaction correction
do contribute to increased inference costs. However, de-
spite the longer inference time, our complete method notably
enhances the accuracy of 3D HOIs generation.

Params (M) FID ↓ R-precision (Top-3) ↑
MDM∗ 49.85 6.98 0.36
Ours (Full) 47.74 1.62 0.46

Table 6. With comparable model size, the performance results of
MDM∗ and Ours (Full).

F. Additional Ablation Studies

Different perturbing times in classifier guidance. As
discussed in Sec. 3.4, in the later stage of classifier guidance,
diffusion models tend to strongly attenuate the introduced
signals. Therefore, we iteratively perturb the predicted mean
of motion for K times at the final denoising step. In Figure 7,
we present the ablation results, illustrating the impact of
different numbers of perturbations. Notably, we observe that
employing 100 perturbations leads to re-convergence and
yields the desired results.

Different guidance strength. As detailed in Sec. 3.4, we
employ distinct control strengths for classifier guidance, con-
sidering the varying feature densities in predicted human

and object motion. Rather than employing equal control
strengths, we opt to assign a higher control strength to ob-
ject motion, allowing it to closely align with human contact
joints, as illustrated in Figure 8.

Different model with comparable model size. Although
our method involves a slightly larger number of model pa-
rameters, our model is specifically designed for HOI genera-
tion. As seen in the Table 6, if we attempt to scale MDM*
to the same model size, its performance remains subpar.

G. User Study

For each method, we select 15 prompts from the BEHAVE
dataset and 10 prompts from the OMOMO dataset, covering
various interaction types and object items. We sample twice
with each prompt to gather a total of 50 results. 40 partic-
ipants are asked to choose their most preferred generation
results from these samples. This user study requires pairwise
comparisons of our method with other baseline on generated
interaction quality, as shown in Figure 15. The results in Fig-
ure 9 indicate strong preference for our method: it is favored
over the baselines in 89.6% (Ours vs. MDM*), 73.8% (Ours
vs. PriorMDM*) and 95.3% (Ours vs. Interdiff).

H. Additional Qualitative Results

In this section, we present additional qualitative results show-
casing the model’s performance evaluated on the OMOMO
dataset, and the effectiveness of APDM.

Qualitative results on OMOMO dataset. We present addi-
tional qualitative results on the OMOMO dataset, rendered
with SMPL [29] shapes, as shown in Figure 11. It is evident
that our method can generalizes effectively to unseen objects
and produce realistic 3D human-object interactions.

Qualitative results of APDM. To verify the accuracy of esti-
mated contact points on object surface, we provide additional
visual results in Figure 13. It can be seen that our method
can predict realistic and practical contact points based on
text descriptions. With APDM, we even can generate dif-
ferent interactions with the same object based on the input
description, as shown in the Figure 14.

Generalization capability. To verify the model’s general-
ization capability, except of unseen object test on OMOMO
dataset, we also downloaded several objects from Sketch-
fab3, adjusted them to a reasonable scale, and used them
as inputs. As shown in Figure 12, our model successfully
establishes reasonable HOI contact with these previously
unseen objects.

3https://sketchfab.com/



Model DBDM APDM
Parameters (·106) 8.82 38.92

Table 4. Model Parameters. The number of learned parameters of
our two core architectures.

Method MDM* PriorMDM* Ours (Full)
Time (s) 32.3 38.6 118.0

Component APDM DBDM Interaction Correction
Time (s) 24.2 46.4 47.4

Table 5. Inference Time (on NVIDIA A5000 GPU). We report
the inference time for baselines, our full method, and its key com-
ponents.

Figure 8. Effect of different control strengths for classifier guid-
ance. (a) We use equal strengths of τ1 = 1, τ2 = 1 to perturb the
predicted mean of human motion and object motion, respectively.
(b) We use different strengths of τ1 = 1, τ2 = 100 for the pertur-
bation. We can see that different strengths work better.

I. Annotation for BEHAVE Dataset

Text Annotating Process. Initially, we manually annotate
the interaction types and the specific human body parts in-
volved, delineating actions like “lift” associated with the
“left hand” or “hold” involving “two hands”. Subsequently,
to generate complete sentences, we leverage the capabili-
ties of GPT-3.5 to assist in formulating the entirety of the
description.

Examples of Annotated Textual Descriptions. In Table 7,
we showcase a selection of our annotated textual descriptions
for the BEHAVE dataset [4].

Analysis of Annotated Textual Descriptions. All text de-
scriptions encompass 36 distinct interaction verbs associated
with 20 different objects. Figure 16 illustrates the frequency
of each verb, indicating their respective occurrences.

Affordance Data. Our affordance data includes 8-
dimensional human contact labels and object contact points.
We employ chamfer distance to measure the distance be-
tween all human body joints and object surface points. Fol-
lowing a predefined distance threshold γ = 0.12, we identify
the 8 contact points on the object surface corresponding to
the 8 primary human body joints. Subsequently, we derive
the human contact labels by encoding the indexes of contact
joints into an 8-dimensional vector represented by binary
values.

Object Textual Descriptions

backpack
A person is carrying the backpack in front.
The person is raising a backpack with his

right hand.
The person at the front presently has control

over the backpack.

chairwood
A person is using the chairwood for sitting.

(wooden chair) The person is propelling the chairwood on the
ground.

Someone is hoisting a chairwood by his left
hand.

tablesquare

A person is lifting the tablesquare, utilizing
his left hand.

(square table) Someone is clutching onto a tablesquare from
the front.

An individual is moving the tablesquare back
and forth.

boxlong

A person is gripping the boxlong from the
front.

(long box) A person is raising the boxlong using his left
hand.

Someone hoists the boxlong with his left
hand.

toolbox
Someone is grasping the toolbox upfront.
The person has a firm hold on the toolbox

with his right hand.
A person is gripping the toolbox with his left

hand.

yogaball

A person is shifting a yogaball back and forth
on the floor using his hands.

The person is occupying a yogaball.
A person is employing an yogaball to engage

in an upper body game.

Table 7. Examples of our annotated textual descriptions for the
BEHAVE dataset rephrased by GPT-3.5 [34].

J. Additional Details of OMOMO Dataset

The OMOMO dataset comprises data captured for a total of
15 objects. Adhering to their official split strategy depicted
in [27](Figure 5), we allocate 10 objects for training and 5
objects for testing. This split allows us to further evaluate
the model’s generalization ability to new objects. Notably,
the OMOMO dataset itself provides text annotation, and we
use GPT-3.5 to add subjects to it and embellish it appropri-
ately. For affordance data, we preprocess it the same way
we handle BEHAVE.



Figure 9. Perceptual User Study. Most participants prefer our
method over the baselines.

Figure 10. Visual results of different variants of our model in
ablation studies.

Figure 11. Additional qualitative evaluation on OMOMO dataset. Given object geometry and text description, our method can generate
high-quality human-object interactions even for the unseen objects (tripod, smalltable, suitcase).

Figure 12. Additional qualitative evaluation on unseen objects.

K. Common Questions

Why use Skeletal Pose Representation rather than SMPL
parameters? Most state-of-the-art text-to-motion meth-
ods adopt the skeletal pose representation proposed by Guo
et al. [13], demonstrating excellent performance and stability.
While some works [2] argue that SMPL parameters [29] con-
tains shape and global information, it does not generate as
smooth motions as skeletal-based approaches. Consequently,
we adopt the skeletal pose representation and aim to lever-
age strong pose priors from the pretrained text-to-motion

model [51] to ensure the authenticity of generated human
motion.

Can we handle multi-phase interactions between humans
and objects? Due to the lack of fine-grained textural descrip-
tions in the current 3D HOI dataset, we primarily consider
only one interaction phase. However, we have found that an
LLM can still reason well for multiple phases given a tem-
plate such as: You will be given a sentence that describes an
interaction between a person and an object across multiple
phases. Your task is to divide the interaction into phases
based on the state of the object and determine the state for
each phase. If the object is being moved by the person dur-
ing a phase, output the number 0. If the object remains
stationary during a phase, output the number 1.

For example, given the text description: The box is on
the ground. A person is picking up the box and holding it
forward, then putting the box towards the table. The box is
on the table" The result from GPT-3.5-turbo: "Phase 1: The
box is on the ground - State: 1 (stationary); Phase 2: The
person is picking up the box and holding it forward - State:
0 (moved); Phase 3: The person is putting the box towards
the table - State: 0 (moved); Phase 4: The box is on the



Figure 13. Visual results of estimated contact points. Our APDM,
trained on the BEHAVE dataset, can accurately estimating contact
positions for objects based on textual descriptions. Furthermore,
it showcases the capability to generalize to unseen objects in the
OMOMO dataset, as demonstrated in the last row.

Figure 14. Leveraging the power of the APDM module, our method
can generate diverse HOIs for the same object using different con-
tacting body parts and contact points.

table - State: 1 (stationary). We will address the generation
of multiple phases of 3D HOI in future work.

Can we generate hand motion with articulated fingers?
The BEHAVE and OMOMO datasets do not capture and
provide raw hand parameters, despite utilizing SMPLH and
SMPLX models to fit human body meshes for rendering.
Consequently, in this paper, we focus solely on whole-body
human motion, excluding articulated hand and finger move-
ments.

Figure 15. An example question for our text-to-hoi user study.

Figure 16. Analysis of word frequency We count the occurrences
of each interaction verb from all text descriptions to illustrate their
respective frequencies.

Acc (%) ↑ Time (s) ↓
GPT-3.5 95.6 0.518
Gemini-1.5-Pro-Exp-0801 99.4 0.259
Gemma-2-27B 98.6 0.522
LLaMA-2-13B 99.4 0.259
APDM + MLP 79.5 2.420

Table 8. LLMs’ inference accuracy (Acc) and average inference
time (Time) on object state prediction.

Why do we use large language models (LLMs) to predict
object state based on the input description? We aim to
leverage LLMs for inferring object states, and our results
demonstrate that they perform efficiently and effectively. As
shown in the Table 8, we evaluated the performance of object
state prediction with GPT-3.5-turbo [34] and obtained an av-
erage precision of 95.6% on the validation set, with an aver-
age response time of 0.518 seconds. The results suggest that
GPT-3.5-turbo is sufficiently accurate without adding signifi-
cant overhead. We also evaluated the prediction performance
using other LLMs, including Gemini-1.5-Pro-Exp-0801 [41]
(99.4%, 0.259s), Gemma-2-27B [50] (98.6%, 0.522s), and
LLaMA-2-13B [53] (94.4%, 0.521s), the latter two being
publicly available.

To further validate the effectiveness of the LLM module,
we modified the APDM module by adding an MLP head
to predict the object status. The newly added MLP takes



in the features consisting of object geometry information
and CLIP embeddings. We used an MSE loss. We got
average precision 79.5% and average time 2.42s for this
design on the validation set, which is significantly worse
than the results of GPT-3.5-turbo (95.6%, 0.518s), Gemma-
2-27b (98.6%, 0.522s), Gemini-1.5-Pro-Exp-0801 (99.4%,
0.259s) and LLaMA-2-13B (4.4%, 0.521s).

In future work, we believe the LLM can play a more im-
portant role in 3D HOI, e.g. providing high-level instruction
for more complex human-object interactions, and our initial
use of the LLM offers insights into its potential applications
and how it can be effectively utilized.

L. Supplementary Video
Beyond the qualitative results presented in the main paper,
our supplementary materials offer comprehensive demos
that provide an in-depth visualization of our task, further
showcasing the effectiveness of our approach.

In these demonstrations, we highlight the better perfor-
mance of our method, HOI-Diff, in producing diverse and
realistic 3D HOIs while maintaining adherence to physical
validity. Notably, the visualizations show that HOI-Diff
consistently generates smooth, vivid interactions, accurately
capturing human-object contacts.

Additionally, we present the visual ablation results
and emphasize the significance and effectiveness of our
affordance-guided interaction correction, underscoring its
substantial impact on improving the overall performance and
quality of the generated 3D HOIs.

M. Limitations
The existing datasets for 3D HOIs are limited in terms of
action and motion diversity, posing a challenge for synthe-
sizing long-term interactions in our task. Furthermore, the
effectiveness of our model’s interaction correction compo-
nent is contingent on the precision of affordance estimation.
Despite simplifying this task, achieving accurate affordance
estimation remains a significant challenge, impacting the
overall performance of our model. A promising direction
for future research involves integrating a sophisticated affor-
dance model pre-trained on an extensive 3D object dataset,
along with text prompts. Such an advancement could signif-
icantly enhance the realism and accuracy of human-object
contact in our model, leading to more natural and precise
HOIs synthesis.

N. Social Impacts
On the positive side, it may offers the research community
valuable insights into understanding human behaviors. On
the negative side, it remains uncertain whether individuals
can be identified solely based on their poses and movements.
However, compared to traditional input images of people,
this method poses a lower risk of invading personal privacy.
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