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Abstract

Multi-model fitting (MMF) presents a significant challenge
in Computer Vision, particularly due to its combinatorial
nature. While recent advancements in quantum comput-
ing offer promise for addressing NP-hard problems, exist-
ing quantum-based approaches for model fitting are either
limited to a single model or consider multi-model scenar-
ios within outlier-free datasets. This paper introduces a
novel approach, the robust quantum multi-model fitting (R-
QuMF) algorithm, designed to handle outliers effectively.
Our method leverages the intrinsic capabilities of quan-
tum hardware to tackle combinatorial challenges inherent
in MMF tasks, and it does not require prior knowledge of
the exact number of models, thereby enhancing its practical
applicability. By formulating the problem as a maximum
set coverage task for adiabatic quantum computers (AQC),
R-QuMF outperforms existing quantum techniques, demon-
strating superior performance across various synthetic and
real-world 3D datasets. Our findings underscore the poten-
tial of quantum computing in addressing the complexities
of MMF, especially in real-world scenarios with noisy and
outlier-prone data1.

1. Introduction
Model fitting is a fundamental and challenging problem in
computer vision, with applications such as 3D reconstruc-
tion, scene layout estimation, motion segmentation, and im-
age stitching. Its objective is to explain input data (e.g., 2D
or 3D point sets) using a non-redundant number of paramet-
ric models. However, challenges arise with multiple mod-
els, whose exact number is typically unknown, and the need
for robustness against outliers. These issues are particularly
critical in homography and fundamental matrix estimations,
where errors can significantly impact downstream tasks. Ul-
timately, multi-model fitting is an ill-posed problem with a
combinatorial nature, where data clustering and model esti-
mation must be solved simultaneously.

Multi-model fitting (MMF) has been actively researched

1Project page: https://4dqv.mpi-inf.mpg.de/RQMMF/

Figure 1. Overview of our R-QuMF, a multi-model fitting ap-
proach that is robust to outliers and admissible to modern quantum
annealers. We first sample models that along with the data define
the preference matrix P . Next, a QUBO problem is prepared that
can be minimised by quantum annealing (after a minor embedding
of the logical problem on quantum hardware) or other solvers. Fi-
nally, the best solution is selected. R-QuMF outperforms previous
quantum-admissible model fitting approaches.

during the last decades, following many different princi-
ples (e.g., optimisation and clustering-based approaches,
see Sec. 2). One of the latest and newest research direc-
tions in the field focuses on adopting quantum computa-
tional paradigms, either gate-based or quantum annealing
[11, 13, 15]. While gate-based quantum machines are uni-
versal in the sense they complement classical computers
with a set of additional operations, quantum annealers can
be thought of as samplers of a specific type of optimisa-
tion problems, i.e., quadratic unconstrained binary optimi-
sation (QUBO) objectives. The latter has recently gained
a lot of attention in the community since many computer
vision tasks can be rephrased as a QUBO, including match-
ing problems [8, 9, 31, 35, 36], object detection [24], multi-
object tracking [45], motion segmentation [3] and neural
network weight optimisation [23, 33]. The main motivation
for using quantum computers lies in their promise to ac-
celerate the solution search for combinatorial optimisation
problems while returning globally optimal solutions with
a certain non-zero probability [14]. Advantages in adopt-
ing a quantum approach have also been shown for non-
combinatorial problems like point-set registration [17, 30].
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Method Multi-Model Outlier-Robust

HQF-RF [13] × ✓
QuMF [15] ✓ ×
Ours ✓ ✓

Table 1. Comparison of method characteristics.

In the context of model fitting, Chin et al. [11] in-
troduced a method based on gate-based quantum hard-
ware, while other works rely on the quantum annealing
paradigm [13, 15]. These methods were shown to pro-
vide improvements compared to classical methods due to
the quantum effects both from the theoretical and practical
perspectives; they are compatible with current and upcom-
ing generations of quantum hardware.

Among these approaches, [11, 13] address the case of a
single model. The QuMF method of Farina et al. [15] for
quantum annealers, instead, not only outperforms previous
quantum single-model fitting approaches but also supports
multiple models and competes with classical state-of-the-
art. However, the main drawback of QuMF [15] is that it
assumes outlier-free data, which is unrealistic in most prac-
tical scenarios. The naive way to extend such an approach
to managing outliers is by post-processing, i.e., only the k
largest models are selected at the end among all candidate
models obtained by random sampling (with k equal to the
true number of models explaining the data). Besides requir-
ing the knowledge of k, or equivalent ancillary information,
this approach is sub-optimal and prone to inaccuracies, as
demonstrated by our experiments on standard datasets.

This paper addresses the challenge of outlier handling in
multi-model fitting and tailors for quantum annealers a new
multi-model fitting approach, which we call Robust Quan-
tum Multi-Model Fitting (R-QuMF); see Fig. 1. In contrast
to previous quantum work [15], it accounts for outliers ex-
plicitly in the formulation, resulting in a more general ap-
proach while exhibiting superior results on real data. An-
other advantage of our method is that it does not require
any prior information about the optimal number of models
explaining the data, which is convenient in practical appli-
cations. More details on the differences with respect to pre-
vious quantum papers are reported in Tab. 1. To summarise,
the contributions of this paper are two-folds:

i) R-QuMF, a new approach for outlier-robust fitting of mul-
tiple models;

ii) A formulation compatible with quantum annealers that
accounts for outliers explicitly: Our method does not
need any post-processing steps or a number of optimal
models in advance as input, which are highly advanta-
geous properties in practice.
We also apply to R-QuMF the decomposition principle

similar to De-QuMF [15]. It addresses the limitations of
current AQC hardware by iteratively decomposing the orig-

inal large problem into smaller QUBO sub-problems until
the final sub-problem selects the solutions among the most
promising models. Our approach significantly outperforms
previous quantum techniques in the experiments with var-
ious multi-model fitting scenarios with different outlier ra-
tios such as geometric model fitting, homography estima-
tion and fundamental matrix estimation. The source code
of our method for all solver versions (including D-Wave and
demo examples) will be made available.

2. Related Work
Classical Approaches. Multi-model fitting has been ad-
dressed since the 1960s, with effective techniques ranging
from the Hough transform [43] to more recent approaches
based either on clustering or optimising an objective func-
tion. Clustering-based methods [2, 6, 10, 18, 21, 26, 28, 29,
32, 37, 38, 40, 46] focus on data segmentation and offer pro-
cedural, easy-to-implement solutions that produce promis-
ing results in most cases. However, hard clustering of data
does not always produce optimal results when models over-
lap. On the contrary, optimisation methods prioritise the
refinement of a precise objective function, offering a quan-
titative measure to assess the quality of the derived solu-
tion. The most common objective functions are typically
based on consensus, i.e., they aim at maximising the num-
ber of inliers of each model, so optimisation-based methods
[4, 5, 20, 27, 39, 47] can be considered as sophisticated ex-
tensions of the popular RanSaC paradigm [16] to the case
of multiple models.

In this respect, the classical work that is mostly related
to our approach is RanSaCov [27], which casts multi-model
fitting as a coverage problem. Given a collection of mod-
els with their consensus sets, RanSaCov extracts either the
minimum number of models that explain all the points (set
cover formulation) or, if the number k of the sought mod-
els is known in advance, it selects the k models that explain
most of the data (maximum coverage formulation). The lat-
ter is effective in dealing with data contaminated by outliers
that can be recognised as uncovered points.

We borrow from RanSaCov the maximum coverage for-
mulation. However, RanSaCov [27] solves the coverage
problems via integer linear programming and branch and
bound, hence, it either resorts to approximations or falls
back to enumerating all candidate solutions. Instead, our
approach exploits quantum effects to optimise the objective
directly in the space of qubits, where global optimality is
expected with high probability after multiple anneals. In ad-
dition, we directly minimize the number of models as done
in several traditional MMF frameworks [4, 5, 20], without
requiring the knowledge of the true number of models in ad-
vance. Contrary to RanSaCov, we do not deal natively with
intersecting models, but inliers belonging to multiple mod-
els can be identified after the models have been extracted by
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inspecting the point-model residuals.

Approaches Compatible with Quantum Hardware.
While many classical methods have been developed, the
first methods based on quantum computing have only re-
cently attempted to exploit the capabilities of quantum hard-
ware to tackle the combinatorial nature of the problem.
The quantum solutions presented so far do not address
the multi-model fitting problem under outliers. Moreover,
other approaches—both theoretical and practical—start to
address closely related problems such as linear regression
[12, 34], clustering and segmentation [3, 41] to capitalise
on the advantages of quantum computing.

The first attempts to address model fitting with the help
of quantum hardware concentrate on single-model fitting
[11, 13]. Chin et al. and Yang et al. [11, 44] introduced
a single-model fitting method based on gate-based quantum
hardware, while Doan et al. [13] rely on quantum anneal-
ing. Although both Doan et al. [13] and our method are
based on linear programming, their approaches diverge sig-
nificantly. Doan et al. [13] employ a hypergraph formalism
that relies on multiple QUBOs within an iterative frame-
work, while our method is more streamlined, using a single
QUBO. Additionally, while they focus on single-model fit-
ting, our approach extends to multi-model fitting.

Farina et al. [15] take this further with their QuMF
method for quantum annealers, which considers multiple
models and achieves results on par with classical state-of-
the-art techniques. However, QuMF is primarily limited by
its reliance on outlier-free data. While post-processing can
improve outlier robustness, it usually requires prior knowl-
edge of the number k of models and often leads to sub-
optimal results, as evidenced by our experiments.

3. Background on Quantum Annealers
Modern quantum annealers (QAs) can sample Quadratic
Unconstrained Binary Optimisation (QUBO) problems,
which in a general form can be written as

arg min
yϵBd

yTQy + sTy +
∑
i

λi||Aiy − bi||22, (1)

where y ∈ Bd is a vector of d binary variables, Q ∈ Rd×d

is a real symmetric matrix, Ai ∈ Rd×d are real matrices,
s,bi ∈ Rd, and λi are scalar weights. The terms under
the ℓ2-norm are rectifiers expressing soft linear constraints.
They preserve the QUBO problem type since Eq. (1) can be
written without constraints as follows:

arg min
yϵBd

yT Q̃y + s̃Ty, (2)

with Q̃ = Q +
∑

i A
T
i Ai and s̃ = s − 2

∑
i Aiλibi.

Eq. (2) is the combinatorial QUBO form admissible to mod-

ern QAs; the elements of Q̃ and s̃ along with the number of
binary variables to be optimised have to be provided.

During quantum annealing, yi are modelled as qubits
weighted by s̃i with the strength of the mutual influ-
ence defined by Q̃. The optimisation takes place in
the 2d-dimensional Hilbert space and involves quantum-
mechanical effects of qubit superposition, entanglement and
quantum tunnelling.

We will call the connectivity pattern between the binary
variables in Eq. (2) the logical problem graph (i.e. in which
qubits are represented by vertices and edges between the
vertices are present if Qi,j entries are non-zero). Since di-
rect interactions between only a small subset of all possi-
ble d(d − 1)/2 pairs of binary variables are enabled by the
hardware, mapping the logical problem graph into the phys-
ical hardware is necessary for most QUBO problems. This
mapping is called minor embedding, as the logical problem
graph is interpreted as a graph minor of a larger graph, i.e.
hardware graph of physical qubits. This means the hard-
ware graph contains qubit chains representing a single log-
ical qubit from the logical problem graph.

4. The Proposed R-QuMF Method
This section presents our robust quantum multi-model fit-
ting (R-QuMF) approach and details of its implementation.
The method can be summarised as in Fig. 1: Steps 1 and
2 are described in Secs. 4.1 and 4.2. Steps 3 and 5 corre-
spond to Sec. 4.3, whereas details of Step 4 (implementa-
tion/solvers) are in Sec. 4.4.

4.1. Preliminaries, Definitions and Notations
We frame the multi-model fitting problem in the presence
of outliers as follows. We are given in input a set of
points X = (x1, x2, ..., xn) and a collection of models
Θ = (θ1, θ2, ..., θm) generated through random sampling
akin to those of the RANSAC algorithm [16]. The desidered
output is a subset {θi1, . . . θik} ⊂ Θ of non-redundant mod-
els that explain the data. Having non-redundant models is
a form of regularisation to make the ill-posed multi-model
fitting problem tractable. Echoing Occam Razors’ princi-
ple, we favour the interpretation of the data that minimizes
the number of models required. Moreover, we assume that:
i) X can be corrupted by high outlier percentages (up to
50%), and that ii) the number k of true models explaining
the underlying data is unknown. The above-mentioned as-
sumptions are very desirable in practical applications.

The problem can be equivalently formulated in terms of
a preference-consensus matrix defined as

P [i, j] =

{
1 if err(xi, θj) < ϵ,

0 otherwise,
(3)

where P ∈ Bn×m is a n ×m binary matrix; n and m be-
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ing the number of points and models, respectively. The i-th
data point xi is assigned to the j-th sampled model θj if its
residual is below an inlier threshold ϵ. Operator error(·, ·)
quantifies the point-to-model distance. Following [27], the
rows of P can be interpreted as preference sets, while the
columns of P—denoted by S1, . . . , Sm—represent consen-
sus sets (w.r.t. ϵ). MMF reduces to selecting from P the
columns that correspond to the sought models {θi1, . . . θik}.

4.2. Revisiting Maximum-Set Coverage Objective

In order to gain robustness against outliers, we generalise
the QUBO formulation presented in QuMF [15] approach –
which, in turn, is based on the Set Cover formulation pre-
sented in [27]. Specifically, we revisit the maximum-set
coverage (MSC) objective for MMF [27]. The MSC task is
to select at most k subsets from Θ such that the coverage
of the data points contained in the set X is maximum (or as
complete as possible); all the uncovered points are consid-
ered outliers. Intuitively, with reference to the matrix P , we
want to select k columns that explain most of the points.

Let us introduce n binary variables y1, . . . , yn such that:
yi = 1 if xi is covered by one of the θj , or, in other terms,
it is part of the selected subsets (i.e. the point is an in-
lier); yi = 0 otherwise (i.e. the point is an outlier). Let
us consider additional auxiliary variables z1, . . . , zm such
that: zj = 1 if model θj is selected; zj = 0 otherwise.
Using this notation, the MSC problem is formulated as an
integer linear programming:

max

n∑
i=1

yi s.t.

m∑
j=1

zj ≤ k,
∑

j:Sj∋xi

zj ≥ yi ∀xi ∈ X

(4)
where both yi ∈ {0, 1} and zj ∈ {0, 1}. In this context, the
first constraint imposes that at most k models are selected
(with k known in advance); the second constraint ensures
that, if yi = 1, then at least one set θj containing xi must be
chosen. Recall that n corresponds to the cardinality of the
set X and m denotes the number of candidate models. Note
that, within this formulation, uncovered points are consid-
ered outliers. Therefore, outliers and uncovered points are
used interchangeably and no artificial models for outliers
need to be introduced.

The combinatorial nature of the problem makes it a suit-
able choice for designing a QUBO method compatible with
a quantum annealer. To accomplish such a task, we make
some changes with respect to the MSC objective in (4).
First, we replace the inequality in the second constraint with
an equality, therefore looking for disjoint models. Secondly,
instead of demanding the approach to select k models, we
opt for directly minimising the number of selected models.
This choice is motivated by the fact that, in many practical
situations, assuming known k is restrictive. Therefore our

final objective, converted into a minimisation problem, is:

min−
n∑

i=1

yi + λ1

m∑
j=1

zj s.t.
∑

j:Sj∋xi

zj = yi ∀xi ∈ X

(5)
where λ1 is a regularisation parameter.

4.3. MSC Reformulated as QUBO
The first step to reformulate MSC as QUBO is to vectorise
the objective in Eq. (5) and convert the constraint into a ma-
trix form. More precisely, we rewrite it as follows:

min
y∈Bn, z∈Bm

−1Tny + λ1(1
T
mz) s.t Pz = y (6)

where 1 denotes a vector of ones (whose length is given as a
subscript), P is the preference matrix of size n×m, y and z
are binary vectors collecting the yi and zj variables, respec-
tively. To simplify the formulation into a single variable
optimisation problem, we can combine the two unknowns
into a single variable w:

w =

(
y
z

)
∈
{
0, 1

}n+m
, (7)

and rewrite the main objective of (6) in terms of variable w:

−1Tny + λ1(1
T
mz) = [−1Tn , OT

m]w + λ1[O
T
n , 1

T
m]w

= [−1Tn , λ11
T
m]w (8)

where O represents a vector of zeros, with its length indi-
cated as a subscript. Furthermore, the constraint in (6) can
also be reformulated in terms of the newly introduced vari-
able w as follows:

Pz− y = On ⇔ [−In×n, P ]w = On (9)

where In×n is an identity matrix of size n× n.
After incorporating the constraint from Eq. (9) as a

penalty term into equation (8) we obtain

min
w∈Bn+m

[−1Tn , λ11
T
m]w + λ2||[−In×n, P ]w||22. (10)

Now, when comparing (10) with (1), the following corre-
spondences emerge:

Q = 0, sT = [−1Tn , λ11
T
m],

A = [−In×n, P ], b = On.
(11)

Note that Q equals zero matrix as there are no quadratic
terms involved. Finally, we obtain the target QUBO objec-
tive admissible on quantum hardware that can be written in
the form of Eq. (2):

min
w

wT Q̃w + s̃Tw, (12)
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where

w =

(
y
z

)
∈
{
0, 1

}n+m
,

Q̃ = λ2

(
In×n −P
−PT PTP

)
, s̃ =

(
−1n
λ11m

)
.

(13)

The QUBO formulation in Eq. (12) can be optimised by
classical global optimisation algorithms such as simulated
annealing, or sampled on a quantum annealer. Note that
the number of unknowns scales linearly with the number of
points and models. Finally, we point out that the decom-
position principle introduced by Farina et al. [15] can be
applied to our QUBO as well, to manage large-scale ap-
plications. The core principle is to iteratively break down
the input problem into smaller (tractable) sub-problems and
aggregate the respective results. Algorithm A in our supple-
ment provides a summary of our method.

4.3.1. Selection of λ’s
The lambda parameters from Eq. (13) are decisive for the
performance of our method. To find suitable values, we
use Tree-structured Parzen Estimator (TPE) [7] which em-
ploys a Bayesian optimisation strategy utilizing a proba-
bilistic model to steer the search process towards hyperpa-
rameter configurations that are more likely to improve the
performance metric of interest. This model-based approach
contrasts sharply with exhaustive grid search, which op-
erates without leveraging prior knowledge or outcomes of
evaluations. TPE optimises by constructing and refining a
probabilistic model based on past evaluation results, thereby
smartly converging to optimal hyperparameters through se-
quential model fitting and utility-based sampling.

4.4. Implementation Details
Our QUBO objective can be optimized either on CPU us-
ing classical solvers, like Simulated Annealing (SA) [22]
and Gurobi [19], or on QPU (Quantum Processing Unit)
via Quantum Annealing (QA).

For simulated annealing, we use D-Wave’s neal package
(version 0.6.0), and we fix the number of samples for SA to
100 (the same used in Farina et al. [15]), and we adopt this
configuration also for the competing methods.

As regard Gurobi, we rely on version 10.0.3 under aca-
demic license with a time limit of 120 seconds for both
RQuMF and the decomposed version De-RQuMF. The
same configuration was used for QuMF and De-QuMF [15].

Experiments with Quantum Anneling are performed on
D-Wave quantum annealer Advantage 5.4. We set the num-
ber of anneals to 5k for the one-shot version and 2.5k for
the decomposed version (the same values used in Farina et
al. [15]). In total, we used approximately 16 minutes of
QPU time for our experiments. The subproblem size in De-
RQuMF is set to 40 (the same as in Farina et al. [15]). We

adopt the maximum chain length criterion for all conducted
experiments to calculate chain length for D-Wave experi-
ments. This involves initially mapping a logical graph onto
a physical graph through the process of minor embedding.
After determining the final embedding, we calculate the
length (l) of the longest chain of qubits. Subsequently, the
chain strength parameter is established by adding a small
offset to l specifically, an offset of 0.5 inline with the pre-
vious works[3, 9]. See further implementation details of
R-QuMF in the released source code.

5. Experiments
We assess the effectiveness of the proposed method on
both synthetic and real datasets. Specifically, we com-
pare our approach with RanSaCov [27], a classical method,
and a quantum apporach, namely the recently introduced
QuMF [15], as these methods are the closest competitors
(see Sec. 2). To evaluate the performance of the analysed
methods we adopt the misclassification error, denoted as
Emis, which judges the quality of MMF in terms of the seg-
mentations attained. Specifically, the misclassification error
counts the number of misclassified points as follows: first,
each point is assigned to a label corresponding to the model
it belongs to (outliers are assigned to the label 0); then,
the map between ground-truth labels and estimated ones
that minimises the overall number of misclassified points
is found; a point is deemed as correct if one of its labels
corresponds to the ground truth. The evaluated multi-model
fitting tasks include fitting lines to 2D points (synthetic), fit-
ting planes to 3D points (real) and two-view segmentation
on the AdelaideRMF dataset [42] for fitting fundamental
matrices or homographies.

5.1. Line Fitting on Synthetic Data
We evaluate our method on line fitting problems by creating
a synthetic test-bed that comprises five lines arranged into
a pentagon (see Fig. 2 for some visualisations). Each line
fitting problem comprises 30 data points, divided into out-
liers and inliers. Outliers are uniformly distributed, whereas
inliers (i.e., points belonging to the lines) are perturbed us-
ing Gaussian noise with a standard deviation of 0.01, and
they are equally distributed among the lines. Each test is
repeated 20 times and the mean misclassification error is
reported. The preference matrix is the same for all com-
pared methods and true models have always been sampled
in the pool of provisional models Θ (a standard practice).
Robustness to Outliers. First, in order to evaluate the ro-
bustness of the methods, we gradually increase the outlier
percentage from 0% to 50% while keeping fixed the total
number of points (i.e., 30 points). The number of sampled
models is set equal to 40 models. Results of this experiment
are reported in Top Fig. 3. QuMF and De-QuMF are not
designed to deal with outliers and, as expected, they do not
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Figure 2. A sample visualization of the synthetic dataset (Ground
Truth) and results for various methods for 50 models and 33%
outliers (i.e. 10 outliers out of 30 points).

# of Models QuMF[15] De-QuMF[15] RanSaCov[27] RQuMF De-RQuMF
20 1.00 1.00 0 0 0
50 16.16 9.50 0.66 0.66 0.66

100 44.83 18.66 0 1.33 0
500 86.66 36.66 14.66 30.99 0

1000 89.50 49.83 15.99 35.99 3.32

Table 2. Misclassification Error [%] on synthetic data with vary-
ing problem size (i.e. number of sampled models); the outlier per-
centage is fixed to 17% (i.e. five outliers); data size is fixed to
30 points. SA is used for quantum methods. This experiment is
the classical counterpart of the evaluations reported in the bottom
Fig. 3. All variants of quantum-enhanced methods in this table
(Farina et al. [15] and ours) use simulated annealing.

provide accurate results as the number of outliers increases.
This phenomenon can also be observed in Fig. 2, where out-
liers are erroneously detected as belonging to models sup-
ported by very few points. On the contrary, RanSaCov,
RQuMF and De-RQuMF, which deal with outliers by de-
sign, are able to cope with a higher percentage of outliers
without suffering a huge performance degradation.

Scalability. In our second experiment, we focus on how
the performance scales with respect to the dimension of the
multi-model fitting problem at hand. Thus, having fixed
the outlier ratio at 17%, we vary the number m of sam-
pled models between 20 and 1000 (with a step size of 10
until 200 models are reached, and a step size of 100 after
that). Results of this experiment are reported in Tab. 2. It
can be noted that, when the number m of sampled models
increases, the misclassification error achieved by RQuMF
worsens, as the problem becomes more difficult to solve.
On the contrary, De-RQuMF can handle a higher number
of sampled models without impacting the overall misclas-
sification error, thanks to the decomposition principle. It
can also be observed that our approach outperforms previ-
ous quantum work (QuMF and De-QuMF), similarly to the
previous experiment.

Figure 3. Top: Misclassification Error [%] on synthetic data for
40 sampled models with increasing outliers (0-50%); the prob-
lem size is fixed to 70 (30 data points + 40 models). SA is used
for quantum methods. Bottom: Misclassification Error [%] for
synthetic data on quantum hardware with increasing problem size;
outlier percentage is fixed to 17%. Note that R-QuMF’s Emis

breaks starting from 120 qubits. Non-robust quantum methods
(i.e. QuMF and De-QuMF) are omitted because they fail in this
scenario.

Experiments on Quantum Hardware. In order to assess
the performance on Quantum Hardware, we also repeat the
previous experiment on D-Wave quantum annealer Advan-
tage 5.4. We consider a constant outlier ratio of 17% and
problem size varying from 50 to 120 qubits (which is the
sum of the number of points and models, namely 30 data
points plus 20 to 140 sampled models). Results are reported
in Bottom Fig. 3. We observe that RQuMF cannot handle
problems starting from 80 models (i.e., 110 qubits)–when
its error goes beyond 50%, while De-RQuMF remains ro-
bust for the entire range of problem sizes with Emis pre-
dominantly staying under 10%. This confirms the advan-
tages of a decomposed and iterative approach for handling
high-dimensional problems. The fact that RQuMF can not
manage large-scale problems is not surprising since quan-
tum hardware is far from being mature, in agreement with
previous work on quantum computer vision [3, 9]. It is
worth noticing that results on quantum hardware are worse
than the ones with SA reported in Tab. 2, as expected. For
example, SA can successfully manage problems with 100
sampled models with 1.33% error whereas QA fails.

To further analyze this aspect, we visualize in Left Fig. 4
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Figure 4. Analysis of R-QuMF runs on our synthetic dataset. Left:
The number of physical qubits as a function of the number of log-
ical problem qubits for data points varying in the range [2; 32];
sampled models are 6 times the data size. Right: The sparsity of
Q̃ in % as the function of the input data size.

how the number of physical qubits (that reflects the effective
allocation of QPU resources) scales with respect to the in-
creasing problem size (represented by the number of logical
qubits) on sample problems. Although Q̃ in our QUBO is
significantly sparse (see Fig. 4-(right)), the number of phys-
ical qubits still increases superlinearly with respect to the
logical qubits, approaching the maximum size that can typ-
ically be handled by an adiabatic quantum computer. These
results are in line with previous quantum work [15].

5.2. Motion Segmentation on Real Data
We consider the AdelaideRMF dataset [42], which encom-
passes two distinct types of multi-model fitting tasks: fit-
ting fundamental matrices (15 image pairs with at least two
moving objects) and homographies (16 image pairs with at
least two planes). Our evaluation specifically targets the
multi-model sequences associated with both types of fitting
problems and we do not take into account single-model fit-
ting. The outlier percentages for these data are depicted in
the supplementary material, with nearly all sequences ex-
hibiting an outlier rate exceeding 30%, and some reaching
as high as 68% (for more detail about the outlier distribu-
tion see Fig. 9 from supplementary material): this presents
a substantial challenge for accurate model fitting. The num-
ber of sampled models for each instance is six times the
number of points. As before, the preference matrices used
as input remain consistent across all evaluated methods. We
conducted each experiment 20 times, reporting the average
Emis.

Unlike the synthetic experiments, where computational
resources are less constrained, for real data we do not re-
port results obtained using QA due to limited QPU time.
In addition to SA, we also consider the Gurobi solver in
order to enrich the evaluation. In addition to the origi-
nal outlier-contaminated sequences, we also consider the
same sequences where outliers have been removed, to study
the impact of outliers and diverse behaviour of the con-
sidered methods. We also analyse the efficacy of post-
processing, especially related to QuMF. Specifically, we ex-

amine whether 1) selecting the top k models identified by a
method and 2) designating all points not accounted for by
these k models as outliers, would yield robustness. Note that
this post-processing does not make sense for RanSaCov, for
it enforces hard constraints in its formulation and returns at
most k models. Aggregated results for fitting fundamental
matrices are given in Tab. 3, whereas those for homogra-
phies are reported in Tab. 4. See also Fig. 5 and 6 for sample
qualitative results. (More visualizations can be referenced
from the supplementary material in Fig. 16 and 17)

Similar conclusions can be drawn for fitting fundamental
matrices and homographies. It is not surprising that QuMF
outperforms our approach in the outlier-free scenario (as
seen in the first row of the aforementioned tables), given
that QuMF is specifically designed for such settings. Addi-
tionally, the lambda parameters in RQuMF have been fine-
tuned for scenarios involving outlier contamination.

In the case with outliers (second row of the tables), how-
ever, QuMF is significantly worse than RQuMF, therefore
showing that explicitly modeling outliers is indispensable
for achieving robustness. Using the post-processing largely
improves the performance of QuMF, which, however, is
still not comparable to RQuMF. Note also that the post-
processing assumes the knowledge of the number of true
models k which is typically unavailable in practice. Our
method is not influenced by post-processing, thereby show-
ing that it selects the right number of models in most cases,
and it is better than RanSaCov in many scenarios. Concern-
ing quantum methods, there are no significative differences
between using Gurobi or SA solvers. The fact that the de-
composed version of our approach does not improve upon
using the full QUBO, could be due to the task difficulty in
terms of outlier corruption compared to the simplified sce-
narios with synthetic data. From Fig. 5 it becomes apparent
that QuMF can segment the entire model accurately only
with the aid of the post-processing phase. Without post-
processing, QuMF struggles to segment the entire model
accurately, often choosing multiple models to explain what
essentially constitutes a single true model (see Fig. 6).

5.3. Plane Fitting on 3D Point Clouds

Finally, we illustrate the versatility and practicality of our
approach in a 3D plane fitting scenario. We consider a 3D
point cloud obtained through image-based 3D reconstruc-
tion [1]. The dataset comprises 10812 points; we sample
2000 models from those, focusing exclusively on planar
structures, with an inlier threshold set to 0.5 and use the
SA solver. Fig. 7 provides a visual example of a fitting per-
formed using our decomposed method, De-RQuMF. The re-
sults demonstrate that our method identifies distinct planes
within the point cloud. As expected, the fitting accuracy for
cylindrical sections of the building is lower as our method
supports plane sampling exclusively per design.
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Outliers Settings QuMF(SA)[15] De-QuMF(SA)[15] RanSaCov[27] RQuMF(SA) De-RQuMF(SA) QuMF(G)[15] De-QuMF(G)[15] RQuMF(G) De-RQuMF(G)

No Outliers Mean 3.61 0.84 9.79 6.46 11.47 3.14 1.29 12.56 11.96
Median 2.68 0.28 7.97 2.41 10.55 1.87 0.93 11.35 10.55

With Outliers Mean 40.37 26.19 7.22 10.46 12.69 45.81 26.21 13.14 12.84
Median 39.82 26.94 5.76 8.33 11.18 46.58 27.35 10.96 11.33

With Outliers + Mean 19.76 8.89 NA 9.70 12.48 25.61 8.94 12.67 12.59
Post Processing Median 19.67 6.55 NA 8.02 11.09 27.92 7.12 10.75 11.33

Table 3. Misclassification Error [%] for the 15 multi-model fundamental matrix sequences from AdelaideRMF [42] using SA or Gurobi
(for quantum methods). Results for RanSaCov without and with outliers are taken from [15] and [25], respectively.

Outliers Settings QuMF[15] De-QuMF[15] RanSaCov[27] RQuMF De-RQuMF

No Outliers Mean 54.10 13.94 - 20.77 19.11
Median 55.44 16.20 - 25.11 24.96

With Outliers Mean 86.23 49.32 14.72 17.01 14.33
Median 86.25 46.35 14.38 16.72 15.76

With Outliers + Mean 51.22 26.57 - 16.75 14.21
Post Processing Median 50.76 20.46 - 16.63 16.05

Table 4. Misclassification Error [%] for the 16 multi-model ho-
mography sequences from AdelaideRMF [42] using SA (for quan-
tum methods). Results for RanSaCov without outliers are not
available whereas those with outliers are taken from [25]. De-
QuMF with post-processing fails on at least one sequence in 16
out of 20 trials.

(a) QuMF (Post Processing),
Emis = 16.72%

(b) DeQuMF (Post Processing),
Emis = 6.16%

(c) RQuMF, Emis = 5.87% (d) De-RQuMF, Emis = 5.57%

Figure 5. Sample results of fundamental matrix fitting on biscuit-
book using SA. Our method performs as well as QuMF and De-
QuMF which use the information about the number of ground-
truth models.

(a) QuMF, Emis = 93.00% (b) DeQuMF, Emis = 41.69%

(c) RQuMF, Emis = 2.9% (d) De-RQuMF, Emis = 0.53%

Figure 6. Sample result of homography fitting on oldclassicswing
(32% outliers) using SA. In the absence of the true number of
models both QuMF and De-QuMF fail. Both our proposed meth-
ods achieve a near-perfect score.

Figure 7. A plane fitting example using the De-RQuMF(SA)
method. The encircled dark red points are uncovered and treated
as outliers. The inset view on the top-right shows the same result
from a different virtual camera perspective.

6. Conclusion
Based on experimental evidence, we conclude that explic-
itly accounting for outliers in the model significantly lowers
the misclassification error across a wide variety of scenar-
ios, compared to all competing quantum-admissible meth-
ods. With respect to QuMF [15], the price to pay in RQuMF
for outlier robustness is an increased dimensionality of the
Q matrix, which is, however, a minor factor in our itera-
tive version and not a major limitation. More importantly,
RQuMF does not assume the true number of models ex-
plaining the data, which is highly advantageous in practice.

Although the attained results are promising, one of the
limitations of our approach is that performance is unpre-
dictable when outliers exceed 50% of the data. While
RQuMF already works on real quantum hardware for small
problems, we believe its usefulness will increase as the
quantum hardware is improving. Managing heteroge-
neous models (e.g. both planar and cylindrical models) is
a promising direction for future extensions.
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