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Supplementary Material

This document provides additional details on our Ro-
bust Quantum Model Fitting algorithm and its decomposed
version (Sec. 7) that could not be included in the main
manuscript due to space limitations. It also provides fur-
ther details and visualizations for the experiments (Sec. 8)
presented in the main paper.

7. Algorithmic Details

Decomposed R-QuMF. Real-world size problems are
currently intractable on a modern AQC, since the amount
of physical qubits required to map logical qubits increases
super-linearly. Our decomposed approach, following Fa-
rina et al. [15], mitigates this issue by decomposing the
preference-consensus matrix P (i.e., consensus set of sam-
pled models) into manageable sub-matrices with at most s
columns (i.e. sub-problem size) that can be confidently sam-
pled on modern quantum hardware using RQuMF. Alg. 1
summarises the decomposed version of our approach that
we call De-RQuMF.

The algorithm takes in input a dataset X , a sub-problem
size s, and inlier thresholds ϵ. It returns a set of labels l cor-
responding to a cover of X according to the retrieved mod-
els. The parameter s controls how many sampled models
are processed in each iteration of the decomposed method.
The first step (lines 3−10) consists of generating a pool of
M tentative models via random sampling and of computing
their consensus set. The number of hypothesis M is defined
as a multiple of the number of input points (line 3). Minimal
sample sets are sampled from X using localized sampling
(line 5) and used to fit a geometric model (line 6). Hence
residuals are computed (line 7). Residuals smaller than the
inlier threshold ϵ define the consensus sets of each sampled
model, which are stored as columns in the preference ma-
trix (line 8). The process is repeated until M models are
sampled (line 4).

The second step (lines 11− 25) involves the decomposi-
tion of the preference matrix P to define the logical graph
mapping. Specifically, P is partitioned into L sub-block Pj

having at most s columns each (line 12). Each sub-problem
Pj is converted to a QUBO form (lines 13−21) with its log-
ical graph and hence solved using RQuMF (line 19). Each
solution z represents the selected models, indicated by the
corresponding columns of Pj . In the pruning phase (line
22), the process retains only the chosen models, while the
rest are eliminated, thereby reducing the dimensionality of
Pj . Once the overall number of retained models falls below
s, a final execution of the RQuMF method is carried out
(line 26) to derive the final solution. The models selected

Algorithm 1 De-RQuMF Method

1: Input: Point set X , problem size s, inlier threshold ϵ
2: Output: Predicted labels l

Generate preference consensus matrix
3: M ← k × |X|, initialize P as a |X| ×M zero matrix
4: for i = 0 to M − 1 do
5: Sample points from X
6: fit geometric model
7: compute residuals R∀{(xi, yi)} ∈ X
8: Update P [:, i]← [r < ϵ?1 : 0 ∀r ∈ R]
9: i← i+ 1

10: end for
Logical graph mapping

11: while |columns(P )| > s do
12: Partition P into L subproblems {Pj} of size s
13: for j = 0 to L do
14: z = RQuMF(Pj)
15: procedure RQUMF(Pj)
16: A← concatenate [−I;Pj ]

17: Q̃← λ2 ×ATA
18: s̃← concatenate [−1N ;λ1 × 1M ]

19: z = solveQUBO(Q̃, s̃)
20: return z
21: end procedure
22: retain z from Pj

23: j ← j + 1
24: end for
25: end while
26: z = RQuMF(P )

Final model selection
27: return z

Generate label assignment
28: for each model zi in z do
29: for each point xj in consensus set of zi do
30: Assign label i to xj

31: end for
32: end for
33: Solve a linear assignment problem to maximize label

coverage across X
34: return predicted labels l

in this last iteration of RQuMF (line 26) undergo label as-
signment (line 29) where the consensus set corresponding
to each model is labelled with the ith index of the model in
question. Subsequently, to optimise the coverage of these
labels across all data points, a linear assignment problem is
tackled (line 33) yielding the final labels l.
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8. Additional Details On Experiments
We provide here additional details about the experiments
performed in Sec. 5 of the main paper.

Experiments Overview. In Fig. 8 we report a general
overview of the experiments conducted on real and syn-
thetic datasets, highlighting the different solvers used (i.e.,
QA, SA etc) and the different configurations adopted to test
scalability and robustness of our proposed methods.

Figure 8. Overview of our experiments. “FM” refers to datasets
based on the fundamental matrix model whereas “HM” refers to
the homography model.

Outliers Percentage In Real Data Multi-Model Fitting
Tasks. The plots in Fig. 9 show the outlier percentage
in multiple fundamental matrices and homography fitting
problems respectively, as referred in 5.2. Outliers typically
correspond to wrong key-point matches that cannot be de-
scribed by any model. It can be appreciated that in most of
the pairs related to fundamental matrices (which are related
to motion segmentation in two images) the outlier ratio is
greater than 30%, while for homographies (which are re-
lated to plane fitting) we have that in 5 pairs out of 16, there
are more than 50% of outliers, making the problem partic-
ularly challenging. This justifies the higher errors reported
in plane fitting with respect to the one attained on motion
segmentation.

Logical and physical graphs. In Fig. 10 we report the
logical and physical graphs corresponding to sample prob-
lems related to the scalability experiment on the synthetic
dataset, where we maintain a constant outlier ratio of 17%
while expanding the sampled model size from 20 to 140.
The left-side images showcase the logical graph representa-
tion of the problem, where each node corresponds to a log-
ical qubit and the edges depict the coupling between these
qubits. Through minor embedding, these logical qubits are
mapped onto physical qubits within the quantum hardware.

Figure 9. Outlier Percentage of each sequence in AdelaideRMF
dataset [42]. Left: 15 image pairs for Fundamental Matrices fit-
ting, Right: 16 image pairs for homographies.

On the right side, the physical representation of these map-
pings is displayed, with each node representing a physi-
cal qubit. The colour inside the node reveals the measured
value in its most stable energy state, while the colour of the
node’s outer ring indicates the direction of bias, specifically
pointing out whether the coefficient of the linear component
in the optimization is positive or negative.

(a) 50 Logical Qubits (b) 62 Physical Qubits

(c) 90 Logical Qubits (d) 273 Physical Qubits

(e) 120 Logical Qubits (f) 602 Physical Qubits

Figure 10. Left: These images depict logical graphs for differ-
ent problem sizes, reported in Fig. Fig. 3 of the main manuscript.
Right: The corresponding physical qubit embedding of logical
graphs(a, c, d) respectively using Pegasus topology on DWave Ad-
vantage5.4 as mentioned in Sec. 4.4 of the main paper.

Hyperparameter Tuning. We studied the effect of hy-
perparameter tuning in our experiments. Specifically, we
studied how the objective value defined in Eq. (12) changes
with respect to λ1, λ2. In Fig. 11 we plot the objective land-
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scape for fundamental matrix (FM) fitting problems, us-
ing the Tree-structured Parzen Estimator (TPE) discussed
in Sec. 4.4. It can be appreciated that the TPE strategy dis-
cards suboptimal values of the parameters and concentrates
more on the ones that result in lower values (i.e, a cluster
of points near the best objective values), contrary to grid
search which doesn’t consider the previous results for se-
lecting parameters for the future. Additionally, in relation
with the Tab. 3 the performance gap between QuMF and
our method in the outlier-free setting can be narrowed by
adjusting the lambda parameters to suit this specific case.
For instance, when optimized lambda values (λ1 = 4.8 and
λ2 = 0.6) are used for the fundamental matrix estimation
task in the absence of outliers, the misclassification error for
RQuMF decreases to 2.05, while for De-RQuMF, it drops to
6.18. Conversely, these parameters are not ideal for outlier-
prone scenarios, where misclassification rates increase from
10.46 to 16.95 for RQuMF and from 12.69 to 15.75 for De-
RQuMF. Therefore, we recommend adjusting the lambda
parameters based on the specific conditions to achieve opti-
mal results.

Figure 11. Lambda optimisation contour plot of RQuMF for fun-
damental matrix data (λ1 = 1.7 , λ2 = 0.1) using TPE.

Number Of Selected Models. Our QUBO formulation
does not require knowing in advance the number of mod-
els, thus we assess whether the number of estimated mod-
els matches the ground truth ones. Results are reported
for fundamental matrix fitting problems in different setups,
i.e., without outliers in Fig. 12 and with outliers in Fig. 13.
We compare the estimated number of models attained by
QuMF, DeQuMF, RQuMF, and De-RQuMF. The plots show
that our methods mostly select the true number of models,
in contrast to previous methods which estimate the right
number of models in the outlier-free scenario, but, without
any kind of post-processing are prone to over-estimation in
the presence of outliers. This is expected as, being based
on set-cover rather than on maximum coverage, QuMF and
DeQuMF try to maximize the number of inliers at the cost
of hallucinating more models in the solution. It is worth
noting, that even when coupled with post-processing, i.e.,
after providing the right number of models, QuMF failed to
achieve competitive results compared to our methods, high-
lighting the fact that these methods, in the presence of out-

liers, can not segment the data at the first place. See also
Tab. 4 from the main paper.

Figure 12. Average number of models selected by different meth-
ods for 15 multimodel sequences from AdelaideRMF [42] dataset
for fundamental matrix fitting in the absence of outliers. The mid-
dle bar in the grouped bars represents the ground truth number of
models, the left two bars represent QuMF, DeQuMF respectively
and the right bars represent our proposed methods.

Figure 13. Average number of models selected by different meth-
ods for 15 multimodel sequences from AdelaideRMF [42] dataset
for fundamental matrix fitting in the absence of outliers. The mid-
dle bar in the grouped bars represents the ground truth number of
models, the left two bars represent QuMF, DeQuMF respectively
and the right bars represent our proposed methods.

Execution Times. Tab. 5 presents the average execution
time per sample of different methods on the AdelaideRMF
[42] dataset. It can be noticed that DeQuMF by far outper-
forms in terms of execution time among all the methods
confirming the advantages of the decomposed approach.
Our formulation is less efficient as the dimension of the Q
matrix has to encode also the number of points, while in
the previous approach, Q scales with the number of sam-
pled models. For reference, biscuitbook of the fundamen-
tal matrix fitting dataset has 341 data points. In one of
the runs, the corresponding Q matrix dimension and node
count in the logical graph are (2046, 2046), 1793282 for
QuMF, (40, 40), 744 for DeQuMF, (2387, 2387), 1890341
for RQuMF, (381, 381), 3059 for DeRQuMF respectively.
Thus De-RQuMF has to solve a problem of almost ×5 big-
ger than DeQuMF (in terms of the logical graph). It’s cru-
cial to emphasise that the extended execution time of our
method significantly enhances the reliability of the results,
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contrary to the DeQuMF approach, which exhibits limita-
tions as detailed in Tab. 5 of the main paper, our proposed
method delivers reliable performance without failure. Ad-
ditionally, we omit the reporting of methods execution time
on quantum hardware, as the anneal time remains constant
at 20µs, independent of problem size. Note that, with the
advent of stable Adiabatic Quantum Computers (AQC), our
approach is not only expected to become significantly faster
but also stay reliable.

Method FM HM

QuMF(SA) [15] 45.88 81.11
DeQuMF(SA) [15] 4.40 4.93
RQuMF(SA)(ours) 51.61 130.10
DeRQuMF(SA)(ours) 21.48 77.99

Table 5. Execution time (in seconds) of methods on different real
datasets using Apple Silicon M1 machine with 8GB RAM.

Qualitative Results. We report the best and worst results
for our RQuMF method for a few sequences of the Adelaide
dataset in Fig. 14 and 15. Notably, our RQuMF method
consistently surpasses the previous QuMF method, its non-
decomposed counterpart, in performance across all scenar-
ios, including both best and worst cases. Moreover, it excels
beyond all other methods in three out of the four instances
as depicted in Fig. 14 and 15. Additional visualizations are
given in Fig. 16 and 17, confirming previous considerations.
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Figure 14. Left: A sample of the best-case for RQuMF on the cubetoy (average Emis = 3.73%) sequence of the AdelaideRMF [42]
dataset for fundamental matrix (for the same sample average Emis for De-RQuMF, QuMF and DeQuMF is 4.13%, 42.95%, 23.71%
respectively). Right: A sample of the worst-case for RQuMF on the breadtoycar (average Emis = 21.02%) sequence of the AdelaideRMF
[42] dataset for fundamental matrix (for the same sample average Emis for De-RQuMF, QuMF and DeQuMF is 26.23%, 35.81%, 21.95%
respectively).

Figure 15. Left: A sample of the best-case for RQuMF on the nese (average Emis = 1.92%) sequence of the AdelaideRMF [42] dataset
for homography matrix (for the same sample average Emis for De-RQuMF, QuMF and DeQuMF is 2.14%, 77.70%, 28.29% respectively).
Right: A sample of the worst-case for RQuMF on the bonhall(average Emis = 41.60%) sequence of the AdelaideRMF [42] dataset for
homography matrix (for the same sample average Emis for De-RQuMF, QuMF and DeQuMF is 23.13%, 74.20%, 25.63% respectively).
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(a) QuMF, Emis = 53.35% (b) DeQuMF, Emis = 35.58%

(c) RQuMF, Emis = 6.12% (d) De-RQuMF, Emis = 6.95%

(e) QuMF, Emis = 45.48% (f) DeQuMF, Emis = 26.94%

(g) RQuMF, Emis = 4.86% (h) De-RQuMF, Emis = 8.20%

(i) QuMF, Emis = 34.09% (j) DeQuMF, Emis = 12.87%

(k) RQuMF, Emis = 7.79% (l) De-RQuMF, Emis = 16.91%

Figure 16. Average Emis on some samples of AdelaideRMF [42] dataset for fundamental matrix fitting in the presence of outliers. one of
our proposed methods outperforms the previous methods every time.
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(a) QuMF, Emis = 83.99% (b) DeQuMF, Emis = 49.88%

(c) RQuMF, Emis = 2.86% (d) De-RQuMF, Emis = 2.80%

(e) QuMF, Emis = 86.51% (f) DeQuMF, Emis = 52.59%

(g) RQuMF, Emis = 20.53% (h) De-RQuMF, Emis = 24.75%

(i) QuMF, Emis = 80.27% (j) DeQuMF, Emis = 27.40%

(k) RQuMF, Emis = 35.67% (l) De-RQuMF, Emis = 22.49%

Figure 17. Average Emis on some samples of AdelaideRMF [42] dataset for homography fitting in the presence of outliers. One of our
proposed methods outperforms the previous methods every time in addition to being reliable.
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