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Abstract

Advancements in machine learning for molecular property
prediction have improved accuracy but at the expense of
higher computational cost and longer training times. Re-
cently, the Joint Multi-domain Pre-training (JMP) founda-
tion model has demonstrated strong performance across
various downstream tasks with reduced training time over
previous models. Despite JMP’s advantages, fine-tuning it
on molecular datasets ranging from small-scale to large-
scale requires considerable time and computational re-
sources. In this work, we investigate strategies to enhance
efficiency by reducing model size while preserving perfor-
mance. To better understand the model’s efficiency, we
analyze the layer contributions of JMP and find that later
interaction blocks provide diminishing returns, suggesting
an opportunity for model compression. We explore block
reduction strategies by pruning the pre-trained model and
evaluating its impact on efficiency and accuracy during
fine-tuning. Our analysis reveals that removing two inter-
action blocks results in a minimal performance drop, re-
ducing the model size by 32% while increasing inference
throughput by 1.3×. These results suggest that JMP-L is
over-parameterized and that a smaller, more efficient vari-
ant can achieve comparable performance with lower com-
putational cost. Our study provides insights for develop-
ing lighter, faster, and more scalable foundation models for
molecular and materials discovery. The code is publicly
available at: github.com/Yasir-Ghunaim/efficient-jmp.

1. Introduction
Molecular property prediction using density functional the-
ory (DFT) and molecular dynamics (MD) calculations plays
a crucial role in the discovery of novel materials, in-
cluding pharmaceutical drugs [32], catalysts [8, 28, 44],
metal-organic frameworks [31], and polymers [37]. How-
ever, the high computational cost of DFT and MD calcula-
tions limits their feasibility for large-scale, high-throughput
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searches. To address this challenge, machine learning po-
tentials have been developed to accelerate DFT and MD
calculations [4, 6], leveraging the latest large-scale datasets
[23], such as Open Catalyst 2020 (OC20) [8], Open Cata-
lyst 2022 (OC22) [44], and ODAC23 [41]. However, train-
ing models from scratch for different tasks remains a ma-
jor bottleneck for their widespread adoption. Differences in
applied DFT theories, molecular system sizes, and chemi-
cal diversity increase the molecular system complexity, thus
hindering the generalizability and scalability of machine
learning models in chemistry.

Recent progress in efficient pre-training strategies [47,
50], the availability of extensive DFT and MD datasets [8,
15, 40, 44], and the introduction of specialized chemical
benchmarks [14, 33] have led to the emergence of founda-
tion models for molecular property prediction. Foundation
models such as the Joint Multi-domain Pre-training (JMP)
model [38] and MACE-MP-0 [1–3] have demonstrated out-
standing performance in diverse molecular tasks. In partic-
ular, JMP adapts the pre-train-then-finetune paradigm from
vision and language tasks to molecular property prediction.
By pre-training on large datasets, the JMP model captures
generalizable molecular representations that enable faster
fine-tuning for downstream tasks, overcoming the need to
train models from scratch for each new application.

Although the large variant of JMP (JMP-L) has outper-
formed state-of-the-art models on 34 out of 40 tasks, its
efficiency in fine-tuning and inference has yet to be ad-
dressed. With 160M parameters, JMP-L achieves similar
performance to MACE [2], which uses only 3M parame-
ters, suggesting potential over-parameterization. This over-
parameterization increases memory and compute require-
ments and leads to higher carbon emissions [38], reducing
overall sustainability. Although 160M parameters are rel-
atively small compared to vision and language models, the
parameter-to-data ratio in molecular ML remains dispropor-
tionately large. For instance, MD17 contains only 1,000
training samples with an average of 13 nodes per graph [38],
making a model of this size inefficient for small datasets.

To address these limitations, we perform an in-depth
analysis of the efficiency of JMP-L. By examining its in-
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teraction block hierarchy, we find that higher-order blocks
contribute less to overall performance. This observation
aligns with recent findings in large language models, where
deeper layers often yield diminishing returns [19]. This mo-
tivates our exploration of block reduction, a pruning strat-
egy that removes the least important layers to improve effi-
ciency while maintaining accuracy. Additionally, we inves-
tigate knowledge distillation techniques tailored to molecu-
lar graph neural networks, integrating them with block re-
duction to assess their combined impact. Although prun-
ing [26] and distillation [48] are widely used in other do-
mains, their application to molecular property prediction,
particularly within the pre-train-then-finetune paradigm, re-
mains underexplored.

Our findings reveal that pruning and distillation improve
JMP-L’s efficiency while preserving comparable perfor-
mance for most tasks. Specifically, we show that a pruned
and distilled variant of JMP-L achieves comparable accu-
racy to the original model across in-distribution and out-of-
distribution downstream tasks. By removing two interaction
blocks, we reduce the model size by 32%, decreasing the
parameter count from 160M to 108M, while improving in-
ference throughput by 1.3× compared to the baseline model.
These results confirm that JMP-L is over-parameterized for
many tasks, and smaller, more efficient versions can achieve
similar performance with reduced computational cost. In
summary, our contributions are three-fold:
• We reduce the number of JMP-L parameters by 32% to

108M and achieve 1.3× faster inference while maintain-
ing performance.

• We evaluate the impact of block reduction and knowledge
distillation on pre-training across in-distribution and out-
of-distribution downstream tasks.

• We demonstrate that later interaction blocks of JMP-L
contribute less to performance, supporting the case for
model compression.

2. Related Work

2.1. Foundation Models in Molecular Property Pre-
diction

Pre-trained models have made considerable advancements
in developing robust architectures across various domains.
Notable examples in the vision domain include ResNet [21]
and ViT [13], which leverage large-scale datasets such as
ImageNet [12] to enhance image processing. In contrast,
deep learning models for molecular property prediction
have primarily been task-specific [3, 24], limiting their util-
ity as general-purpose pre-trained models. Recently, JMP
[38] introduced a supervised pre-training strategy on large
datasets, establishing a shared knowledge base for various
downstream tasks. Built on GemNet-OC [18], JMP is the
first large-scale foundation model for molecular property

prediction. However, its fine-tuning efficiency remains a
challenge, as it requires more than 275 GPU hours to con-
verge [38]. In this work, we provide a comprehensive anal-
ysis of JMP and propose a more efficient approach to reduce
its computational demands, enhancing its accessibility and
scalability for broader applications.

2.2. Efficient Training
2.2.1. Pruning
Pruning is a technique used to reduce the size and com-
plexity of a neural network by eliminating weights, neu-
rons, layers, or filters without compromising accuracy [5,
9, 39]. It is particularly effective when a model is over-
parameterized for its task [39]. Structured pruning, which
removes entire layers or filters, has been shown to im-
prove memory and computational efficiency in various ar-
chitectures, including large language models [42, 49], vi-
sion transformers [46], and graph neural networks (GNNs)
[26]. JMP-L, which is based on the GemNet-OC architec-
ture [18], consists of an embedding layer, six interaction
layers, and three MLP layers. Drawing inspiration from
pruning techniques in other domains, we investigate the im-
pact of removing GemNet-OC interaction layers to acceler-
ate fine-tuning and inference while maintaining model per-
formance.

2.2.2. Knowledge distillation
Knowledge distillation (KD) is a model compression tech-
nique that transfers knowledge from a larger teacher model
to a smaller student model, aiming to achieve similar per-
formance with reduced computational costs [7, 22]. Ini-
tially introduced by Bucilua et al. [7] and later pop-
ularized by Hinton et al. [22], KD has been widely
applied in the language [45], vision [20], and general
graph domains [43], mainly in classification tasks. How-
ever, applying KD to large-scale regression tasks such as
DFT and MD simulations presents unique challenges [16].
Molecular GNNs operate on structured graph data with
features distributed across nodes and edges, making di-
rect knowledge transfer from teacher to student challeng-
ing [16]. These challenges are amplified when the teacher
and student models differ considerably in architecture, mak-
ing feature alignment more difficult. To address these
challenges, Ekström et al. [16] propose specialized loss
functions—node2node (n2n), edge2edge (e2e), edge2node
(e2n), and vector2vector (v2v)—to supplement standard
loss functions and enhance the effectiveness of KD in
molecular GNNs. These strategies help bridge the gap be-
tween teacher and student models, improving knowledge
transfer in complex molecular systems.

The standard loss function L0 for molecular GNNs, as
outlined in Eq. 1, accounts for both energy and force pre-
dictions:



L0 = αELE(Ê, E) + αFLF(F̂ ,F ) (1)

where E and F represent the ground-truth energy and
forces, while Ê and F̂ denote their predicted counterparts.
The terms LE and LF denote the energy and force loss
functions, respectively, weighted by αE, αF ∈ R.

For knowledge distillation [22], the loss function in Eq.
1 is augmented with an auxiliary distillation loss LKD, re-
sulting in the following formulation:

L = L0 + λLKD.

In this work, we aim to develop a more efficient variant
of the foundational model JMP-L without compromising its
performance. Since JMP is built on GemNet-OC [18], we
focus on the node2node and edge2edge losses as key com-
ponents of the distillation process. Unlike previous stud-
ies that apply distillation only at the final task level, our
primary objective is to enhance the efficiency of the foun-
dational model itself while systematically assessing its im-
pact on downstream tasks. Specifically, we examine how
distillation influences the model’s generalization capabili-
ties, providing deeper insights into its performance across
diverse molecular property prediction tasks.

2.2.3. Pruning Coupled with Distillation
Aggressive structured pruning can substantially degrade
model performance. For instance, brute-force structural
pruning methods, such as L2-based filter-wise pruning,
have led to a 50-fold performance drop in LLMPruner
[27]. However, in large models, aggressive pruning com-
bined with fine-tuning can considerably reduce the number
of layers—sometimes by half—while incurring only mini-
mal performance loss [19]. Techniques such as parameter-
efficient fine-tuning, quantization, and low-rank adapters
further help preserve model accuracy post-pruning [19].
Recent KD approaches, such as those proposed by Ekström
et al. [16], require training the student model from scratch,
demanding substantial computational resources. To the best
of our knowledge, no prior work has explored the combined
use of pruning and distillation for DFT and MD molecular
property prediction. Our approach applies distillation to a
pre-trained, block-reduced network, offering the potential
for improved accuracy while greatly reducing both training
and inference time.

3. Block Reduction for Efficient Foundation
Models

3.1. Preliminaries
Our work is based on the GemNet-OC architecture [18], al-
though our analysis can be applied to similar architectures.

In particular, we define fθ : R4×n → Rn×d as a func-
tion that maps a molecular graph, represented by the 3D po-
sitions and atomic numbers of n atoms, to a feature space.
The feature extraction process is formulated as follows:

f(x) = concat(f1(x), f2 ◦ f1(x), . . . ,
fb ◦ fb−1 ◦ · · · ◦ f2 ◦ f1(x))

(2)

where the model extracts features through b sequential
blocks. Each block fi : Rn×d → Rn×d (for i > 1) refines
the representations, while the initial block f1 : Rn → Rn×d

is an embedding layer that performs the initial transforma-
tion. The resulting feature space is of dimension Rn×(d×b),
obtained by concatenating outputs from all b blocks. This
extracted feature representation is then processed through a
sequence of multilayer perceptron (MLP) layers, known as
FinalMLP in GemNet-OC.

g(x) = gm ◦ gm−1 ◦ · · · ◦ g2 ◦ g1(x)

where g1 : Rn×(d×b) → Rn×d transforms the concatenated
features into d, with g(x) : Rn×(d×b) → Rn×d provid-
ing the final transformation. Finally, the output of g(x) is
passed to a prediction head h(x), which predicts the three-
dimensional force vector for each atom and the molecule’s
energy. The full model is the composition between the fea-
ture extractor and the MLP layers given by the following:

F (x) = h ◦ g ◦ f(x). (3)

For the GemNet-OC architecture used by JMP-L, b = 7
(one embedding layer and six interaction blocks) and m =
5, resulting in 160.1M parameters in total. JMP-L is shown
on top in Figure 1.

3.2. Interaction Block Importance
Interaction blocks are a fundamental component of machine
learning potential models (e.g., SchNet [35], GemNet-
OC [17]), enabling richer representations and capturing
long-range atomic interactions. These models stack mul-
tiple interaction blocks in a sequential manner to build
higher-body representations and model complex atomic re-
lationships effectively. However, quantifying each inter-
action block’s contribution to the final prediction is not
straightforward, as interactions are highly interdependent
and difficult to isolate.

To address this, we propose an approach to measure in-
teraction block importance within the GemNet-OC back-
bone used by JMP-L. We employ GradCAM [36] to assess
each block’s impact on the final output. First, we extract
and concatenate the output features from all b blocks, as
formulated in Eq.2. Using these features (f ) and Eq. 3, we
compute the model’s output and its corresponding loss, L0.



Figure 1. Block Reduction for Efficient Foundation Models. The top model represents the foundation model JMP-L, where interaction
blocks extract features, which are concatenated and processed by FinalMLP before making predictions. The bottom model is its pruned
version, constructed by removing low-importance blocks and adjusting FinalMLP. To mitigate performance degradation, we apply both
feature distillation (node-to-node and edge-to-edge) and output distillation to transfer knowledge from the original model.

We then compute the gradient ∇CAM of f with respect to
L0 and determine each block’s relevance r using:

r = ReLU (f ◦ ∇CAM) .

Following the GradCAM methodology, we apply a
ReLU activation to emphasize features that positively con-
tribute to the model’s prediction. To quantify the contribu-
tion of each interaction block, we decompose the relevance
map r, which represents the overall importance of features,
into b partitions. Each partition ri corresponds to a fea-
ture dimension d of a specific interaction block. Finally, we
compute the importance score for each block by averaging
ri across both the feature and batch dimensions, providing
a measure of its overall contribution to the final prediction.

After using GradCAM, we normalize the contributions
by dividing each individual contribution by the sum of all
contributions. This ensures that the importance scores are
comparable across different models and configurations.

3.3. Block Reduction Strategies
Although the pre-trained GemNet-OC (JMP-L) achieves
strong performance when fine-tuned across various tasks
and datasets, fine-tuning it remains computationally expen-
sive. This inefficiency arises from its large architecture
and the high computational cost of each forward pass. For
instance, fine-tuning JMP-L on rMD17—containing only
1,000 graphs—still requires 160.1M parameters. Given the
small scale of rMD17, this parameter count appears dis-
proportionately large, limiting the practicality of leveraging
such a powerful pre-trained model efficiently.

In this work, we aim to improve the efficiency of foun-
dation pre-trained models through block reduction. Specif-

ically, we explore different strategies to construct a reduced
model F̂ (x) = h ◦ ĝ ◦ f̂(x), where:

f̂(x) = concat(f1(x), f2 ◦ f1(x), . . . ,
fb′ ◦ fb′−1 ◦ · · · ◦ f2 ◦ f1(x))

and
ĝ(x) = gm ◦ gm−1 ◦ · · · ◦ g2 ◦ g′1(x)

with g′1 : Rn×(d×b′) → Rn×d and b′ < b.
This formulation reduces the original architecture by re-

moving the last b−b′ interaction blocks and adjusting the di-
mensionality of the first MLP block (g′1) accordingly. How-
ever, removing interaction blocks disrupts the alignment be-
tween the feature extractor f̂ and the FinalMLP ĝ, as it al-
ters the structure of the extracted features. To address this
misalignment, we explore three main strategies to restore
compatibility between the reduced feature extractor and the
FinalMLP.

Random MLP. Random MLP is the simplest baseline,
where we resize the first MLP layer g′1 and randomly ini-
tialize its weights. This approach assumes that the features
extracted by the remaining interaction blocks are still useful
and that the weights of g′1 can be learned effectively during
fine-tuning. We refer to this strategy as RandomMLP in the
experimental section.

Sliced MLP. In the Sliced MLP strategy, we retain the pa-
rameters of the first MLP layer g′1 from the original model,
truncating it to match the reduced dimensionality of the fea-
tures. This assumes that the preserved parameters provide
a good initialization for fine-tuning, maintaining continuity



between the pre-trained and pruned model. Unless other-
wise stated, all of our block reduction experiments follow
this strategy.

Knowledge Distillation. In the knowledge distillation ap-
proach, we introduce a learning paradigm tailored for block
reduction. Specifically, we follow [16] by distilling the
force predictions of the pre-trained model F into its block-
reduced counterpart F̂ . This is achieved by optimizing the
following objective:

min
θ

Ex∼D∥F̂θ(x)− Fθ0(x)∥1

where D represents the data distribution used during the
pre-training phase of F .

To further align the representations between the original
and pruned models, we incorporate node-to-node (n2n) and
edge-to-edge (e2e) distillation. This extends the objective
to:

min
θ

Ex∼D

[
∥F̂ (x; θ)− F (x; θ0)∥1+

n′∑
i=1

∥ĝi(f̂(x); θ)− gi(f(x); θ0)∥1
]
.

The first term represents output distillation, while
the second ensures feature-level consistency between the
pruned and original models. Our full pipeline is illustrated
in Figure 1.

It is important to note that all prior block reduction ap-
proaches operate on the pre-trained foundational model.
Thus, block reduction produces a generalist model, which
must still undergo fine-tuning on task-specific datasets to
become a specialized model for a given downstream appli-
cation.

4. Experiments
4.1. Deeper layers contribute less
To develop a more efficient pre-trained version of JMP-L
for diverse downstream tasks, we analyze the contribution
of each interaction block to the final output prediction on
the pre-training distribution, as outlined in Sec.3.2. Fig-
ure 2 reveals a gradual decline in relevance in deeper lay-
ers, with the sixth and seventh blocks exhibiting the low-
est contribution. This gradual decline suggests that blocks
with low contribution can be removed with minimal impact
on performance. Although the embedding block (f1) also
shows low relevance, it directly feeds into the first inter-
action block (f2), which initializes message passing and
is crucial for propagating information between atoms and
bonds. Removing the embedding block could introduce
major structural disruptions, potentially degrading perfor-
mance, and is therefore not considered for block reduction.

Figure 2. Block Relevance Analysis. This table illustrates the
contribution of each output block in JMP-L to the final predic-
tion. The first block, f1, represents the embedding output, while
f2 to f7 correspond to the six interaction blocks of GemNet-OC.
The results show diminishing returns in deeper interaction blocks,
suggesting they are strong candidates for pruning to improve effi-
ciency without considerable performance loss.

4.2. Block Reduction and Distillation in Pre-
training

We investigate the effectiveness of block reduction (BR)
and knowledge distillation (KD) during the pre-training
phase. The importance analysis of the blocks shows that the
deeper interaction blocks in JMP-L contribute less to the fi-
nal prediction compared to the earlier ones. This raises a
key question: how much do these later blocks impact pre-
diction performance, and if their removal leads to degrada-
tion, to what extent can knowledge distillation recover the
lost performance? To address these questions, we explore a
combined approach of block reduction and knowledge dis-
tillation, assessing whether distilling knowledge from the
full model into a block-reduced version can maintain per-
formance while reducing computational costs.
Settings: We use the same pre-training datasets as in
JMP [38], including OC20 [8], OC22 [44], ANI-1x [40],
and Transition-1x [34], with a total of 120M training sam-
ples. Following our block reduction (BR) strategy, we se-
quentially remove interaction blocks starting from the last
one, as indicated by the importance analysis in the pre-
vious section. This allows us to construct progressively
smaller versions of JMP-L, retaining 5, 4, 3, and 2 inter-
action blocks. To mitigate potential performance degrada-
tion, we apply a brief knowledge distillation (KD) phase to
each pruned model using less than 1.5% of the pre-training
datasets. We find that running KD for under 2 GPU-days
on an A100 is sufficient for convergence. We report perfor-
mance using the mean absolute error (MAE).
Observations: Table 1 presents the results of block re-
duction (BR) and knowledge distillation (KD) during the
pre-training stage. Removing interaction blocks leads to
a performance drop proportional to the number of blocks
removed. Notably, OC20 and OC22 show smaller perfor-
mance drops compared to other datasets, likely due to their



Table 1. Force MAE Evaluation During Pre-training. Impact evaluation of our block reduction (BR) approach on pre-training perfor-
mance, comparing results with and without knowledge distillation (KD). The reported values represent the force MAE (meV/Å) across the
OC20, OC22, ANI-1x, and Transition-1x datasets used for pre-training. KD reduces the performance drop relative to the teacher model.
Note: The block count excludes the embedding output.

# of Blocks OC20 OC22 ANI-1x Transition-1x

BR 2 106.6 (-89.6) 111.9 (-89.0) 711.8 (-689.3) 188.3 (-175.5)

+ KD 2 52.1 (-35.1) 56.3 (-33.4) 144.4 (-121.9) 53.3 (-40.6)

BR 3 94.1 (-77.1) 99.3 (-76.3) 615.1 (-592.6) 149.6 (-136.9)

+ KD 3 42.1 (-25.2) 45.6 (-22.7) 97.6 (-75.1) 39.1 (-26.4)

BR 4 65.3 (-48.4) 68.9 (-46.0) 443.4 (-421.0) 99.8 (-87.1)

+ KD 4 26.7 (-9.8) 34.5 (-11.6) 58.1 (-35.7) 24.2 (-11.4)

BR 5 39.1 (-22.1) 45.7 (-22.7) 220.0 (-197.6) 48.5 (-35.8)

+ KD 5 19.8 (-2.8) 25.8 (-2.9) 30.1 (-7.7) 16.0 (-3.3)

JMP-L (Teacher) 6 17.0 22.9 22.5 12.7

higher force loss weight during pre-training [38], making
the model less sensitive to deeper block removal. Applying
both BR and KD greatly reduces the performance gap with
the teacher model. For instance, with 5 blocks, the per-
formance difference narrows to just -2.8 and -2.9 meV/Å
for OC20 and OC22, respectively. These results demon-
strate the effectiveness of combining BR and KD in main-
taining predictive accuracy during pre-training. Next, we
analyze how well these pruned models perform on down-
stream tasks.

4.3. Main Results

We evaluate pruned versions of JMP-L across various
downstream tasks and knowledge transfer strategies to de-
termine the most efficient fine-tuning approach for optimal
performance. A key question is whether distilling during
pre-training is more effective than applying block reduction
alone. To explore this, we consider different baselines dur-
ing fine-tuning.
Baselines: We evaluate the following fine-tuning strategies:
• BR (Block Reduction): Remove interaction blocks and

slice their corresponding weights in the first layer of Fi-
nalMLP.

• BR/RandomMLP: A simpler variant of BR, where in-
stead of pruning the first layer of FinalMLP, we randomly
initialize a smaller version to match the reduced number
of interaction blocks.

• BR+KD (Block Reduction + Knowledge Distillation):
Load the pruned and distilled version of JMP-L, where
knowledge distillation has been applied during pre-
training.

We further report the original performance of JMP-L
from [38] alongside our reproduced version. Our fine-
tuning process is constrained by a fixed computational bud-
get, compared to the vanilla JMP-L:

Settings: We evaluate the baselines on a representative set
of targets from the datasets used in [38], specifically: As-
pirin (rMD17 [10]), U0 (QM9 [29]), Solvated Amino Acids
(SPICE [15]), Ac-Ala3-NHMe (MD22 [11]), and Band Gap
(QMOF [30]). For a fair comparison, since the baselines
differ in computational demands, we fine-tune each model
for 1 GPU-day on a V100, except for QM9, which requires
2 GPU-days to approach convergence. We then evaluate
the models on the test set of the corresponding dataset and
target. Our results are shown in Figure 3.

Block Reduction is a Strong Baseline: Figure 3 high-
lights the surprising effectiveness of BR (shown in blue)
across datasets. In particular, the 5-block model matches
the performance of the 6-block reproduced JMP-L baseline.
Even the 4-block model remains competitive across most
tasks and outperforms the original JMP-L on the QM9 tar-
get. These results suggest that for tasks with longer conver-
gence times, such as QM9, a compressed model not only
reduces computational costs but may also converge faster
and even surpass the full model’s performance. However,
when further reducing to 3 or 2 blocks, we observe a more
pronounced drop in performance, indicating that the model
may be underfitting the task.

Pre-training Distillation Works in Certain Scenarios:
While KD improved performance on the pre-training
datasets (as discussed in Section 4.2), its effectiveness on
downstream tasks varies, as shown by BR+KD (yellow in



Figure 3. Evaluation on downstream tasks. Evaluation of the performance across various downstream tasks using different block
reduction strategies: block reduction (BR), block reduction with a randomly initialized MLP (BR/RandomMLP), and block reduction
combined with knowledge distillation (BR+KD). Performance is measured in MAE: meV/Å for force targets, meV for the QM9 energy
target, and eV for the QMOF band gap target. The original JMP-L model utilizes 6 blocks.

Figure 4. Training Efficiency Analysis. We compare the convergence speed of JMP-L models with 3, 4, and 6 blocks over a fixed 1
GPU-day training budget. The 4-block model achieves faster convergence than the 6-block model on QM9 after 8 hours but lags behind
on MD22, while performing comparably on other datasets. Performance is measured in MAE: meV/Å for force targets, meV for the QM9
energy target, and eV for the QMOF band gap target.

Figure 3). For example, KD improves performance on
rMD17 when using 2 or 3 blocks, but it hurts the perfor-
mance with 4 and 5 blocks. This could be due to the fact
that the last two blocks of JMP-L contribute less to down-
stream tasks (as indicated by BR results), meaning that dis-
tilling from these less relevant blocks during pre-training
may introduce noise and distort useful features. Interest-
ingly, KD improves performance for the 5-block model in
QM9, suggesting a potential edge case where distillation
benefits from specific task characteristics.
JMP-L’s FinalMLP Layer May Indicate Distribution
Shifts: The BR/RandomMLP baseline (red in Figure 3)
exhibits inconsistent behavior across different tasks. In
QMOF, SPICE, and MD22, randomly initializing the first
layer of FinalMLP had little impact on performance, sug-
gesting a distribution shift between pre-training and down-
stream tasks. In contrast, BR/RandomMLP shows a notice-
able performance drop in rMD17 and QM9, indicating that
the learned FinalMLP features are more relevant to these
tasks. This observation also aligns with the improved per-
formance of BR+KD in rMD17 and QM9, where KD ef-
fectively preserves useful representations. These findings

suggest that FinalMLP features could serve as indicators of
distribution differences across tasks, highlighting variations
in task similarity to the pre-training distribution.

4.4. Evaluating Training and Inference Efficiency
Training Efficiency: We complement our analysis with
both training and inference speed-ups gains. For training
efficiency, Figure 4 illustrates the convergence speed over
a fixed budget of 1 GPU-day for models with 3, 4, and 6
blocks across five datasets: rMD17, SPICE, MD22, QM9,
and QMOF. The performance is measured in force MAE
(meV/Å) for rMD17, SPICE, and MD22, energy MAE
(meV) for QM9, and band gap error (eV) for QMOF.

In general, reducing the number of interaction blocks
accelerates training. The 4-block model has similar con-
vergence behavior to the full 6-block model across most
datasets. For example, on QM9, the 4-block model outper-
forms the 6-block model after 8 hours of training, achieving
lower energy MAE. However, on MD22, the 4-block model
lags behind, with the 6-block model maintaining a notice-
able performance advantage. In contrast, the 3-block model
shows the fastest convergence across datasets but exhibits



a worse final validation loss, indicating a trade-off between
efficiency and accuracy.

These findings emphasize the importance of selecting an
optimal block count to balance convergence speed and fi-
nal model accuracy. The 4-block model strikes a balance,
providing a moderate training speedup over the 6-block
model in some datasets while maintaining competitive per-
formance across all datasets.

Table 2. Inference Efficiency Analysis. We evaluate the impact of
block reduction on JMP-L’s efficiency using a subset of the QMOF
validation set. Reducing interaction blocks lowers computational
cost and improves inference speed. The 4-block model provides
the best trade-off, achieving a 1.3x speedup with a 32% reduction
in parameters.

Blocks Throughput
(samples/s)

GFlops
(Billion)

Parameters
(M)

6-blocks 19.1 1.74 160.9

5-blocks 21.8 (+2.7) 1.45 (-0.29) 134.5 (-16%)
4-blocks 25.6 (+6.5) 1.16 (-0.58) 108.2 (-32%)
3-blocks 30.8 (+11.7) 0.87 (-0.87) 81.9 (-49%)
2-blocks 38.0 (+18.9) 0.59 (-1.15) 55.5 (-65%)

Inference Efficiency: To assess inference efficiency, we
use the QMOF dataset, which has a large average graph
size, making it a representative benchmark for evaluating
computational cost. Using a V100 GPU, we evaluate infer-
ence throughput on a subset of the QMOF validation set and
report results in Table 2.

Reducing the number of interaction blocks improves in-
ference throughput by lowering computational overhead.
The 6-block model processes 19.1 samples per second,
while reducing to 5 blocks increases throughput to 21.8
samples per second, reflecting a moderate efficiency gain.
Further reductions yield more substantial improvements:
the 4-block model achieves 25.6 samples per second, pro-
viding a 1.3× speedup over the 6-block model while main-
taining strong predictive performance. The 3-block and 2-
block models offer even higher throughput, but at the cost
of accuracy loss as seen in Figure 3.

Our block reduction strategy greatly lowers computa-
tional cost, as reflected in GFlops and parameter count.
The 4-block model reduces GFlops from 1.74B to 1.16B
and parameters from 160.9M to 108.2M (-32%), demon-
strating its efficiency gains. This targeted reduction makes
the block-reduced models particularly well-suited for de-
ployment in resource-constrained environments and high-
throughput screening applications, where maintaining pre-
dictive performance while optimizing computational effi-
ciency is essential.

5. Generalization to Other Architectures

Our analysis in Section 4 is based on the GemNet-OC [18]
architecture within the JMP [38] pre-training paradigm. To
the best of our knowledge, JMP is the only large-scale,
multi-domain pre-training approach for atomic property
prediction. While several architectures provide pre-trained
checkpoints on the OC20 catalysis dataset [8], it is unclear
whether these models generalize as well as JMP across di-
verse downstream tasks.

To evaluate the generalizability of our block reduction
methodology beyond GemNet-OC, we extend our study
to EquiformerV2 [25], a state-of-the-art transformer-based
equivariant model for atomic property prediction. Us-
ing the same JMP pre-training methodology, we pretrain
EquiformerV2 with 31M parameters on the same four up-
stream tasks. Due to computational constraints, we limit
pre-training to 12 A100 GPU days. We then apply our block
reduction and knowledge distillation strategies and evaluate
the model across multiple downstream tasks. While block
reduction and knowledge distillation considerably reduced
training time with minimal performance loss for JMP-L
(160M parameters), their impact on EquiformerV2 (31M
parameters) was more limited. This suggests that our ap-
proach is most effective for larger models, where over-
parameterization leaves room for optimization. We include
the evaluation results and discussion in the Appendix.

6. Conclusion

In this work, we explored strategies to enhance the effi-
ciency of foundation models for atomic property predic-
tion. By analyzing the role of individual layers in JMP-
L, we found that deeper interaction blocks contribute less
to predictive accuracy, making them suitable candidates for
pruning. Our results show that reducing JMP-L’s parameter
count by 32% improves inference throughput by 1.3× while
maintaining comparable performance. Additionally, we
demonstrated that knowledge distillation can help mitigate
performance degradation in certain tasks. Our methodol-
ogy reduces inference time and computational cost, making
the optimized models practical for scientists conducting re-
search in resource-constrained settings and high-throughput
screening, where both accuracy and efficiency are crucial.
We hope this study encourages further research into effi-
cient training and inference for molecular property predic-
tion, paving the way for lighter models in molecular and
materials discovery.
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Dávid P Kovács, Janosh Riebesell, Xavier R Advincula,
Mark Asta, William J Baldwin, Noam Bernstein, et al. A
foundation model for atomistic materials chemistry. arXiv
preprint arXiv:2401.00096, 2023. 1, 2

[4] Jörg Behler and Michele Parrinello. Generalized neural-
network representation of high-dimensional potential-energy
surfaces. Physical Review Letters, 98(14), 2007. 1

[5] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Fran-
kle, and John Guttag. What is the state of neural network
pruning? Proceedings of machine learning and systems, 2:
129–146, 2020. 2

[6] Mihail Bogojeski, Leslie Vogt-Maranto, Mark E. Tucker-
man, Klaus-Robert Müller, and Kieron Burke. Quantum
chemical accuracy from density functional approximations
via machine learning. Nature Communications, 11(1), 2020.
1

[7] Cristian Bucilua, Rich Caruana, and Alexandru Niculescu-
Mizil. Model compression. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, page 535–541, New York, NY, USA,
2006. Association for Computing Machinery. 2

[8] Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut
Lavril, Muhammed Shuaibi, Morgane Riviere, Kevin Tran,
Javier Heras-Domingo, Caleb Ho, Weihua Hu, et al. Open
catalyst 2020 (oc20) dataset and community challenges. Acs
Catalysis, 11(10):6059–6072, 2021. 1, 5, 8

[9] Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A
survey on deep neural network pruning-taxonomy, compari-
son, analysis, and recommendations, 2024. 2

[10] Stefan Chmiela, Alexandre Tkatchenko, Huziel E Sauceda,
Igor Poltavsky, Kristof T Schütt, and Klaus-Robert Müller.
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[24] Dávid Péter Kovács, J Harry Moore, Nicholas J Brown-
ing, Ilyes Batatia, Joshua T Horton, Venkat Kapil, Ioan-
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Appendix

A. Beyond GemNet-OC
In this section, we extend our block reduction and knowl-
edge distillation methodology to EquiformerV2 [25], a
state-of-the-art transformer-based equivariant model for
atomic property prediction. Following the same pipeline
as in the main paper, we first apply GradCAM as described
in Section 3.2 to assess interaction block importance. We
then pre-train EquiformerV2 following the same methodol-
ogy used for JMP before evaluating its performance on the
downstream tasks.

A.1. Block Relevance
Using the JMP [38] pre-training datasets (OC20, OC22,
ANI-1x, and Transition-1x), we perform forward passes on
1,000 samples from each dataset to extract features from
the EquiformerV2 backbone (31M parameters). This back-
bone consists of 8 transformer blocks. We save the output
features of each block and apply GradCAM (as described
in Section 3.2) to assess the relevance of each block to the
final output prediction.

Appendix Figure 1 presents the relevance scores of
EquiformerV2’s transformer blocks. Similar to GemNet-
OC, we observe a diminishing return in later blocks, where
deeper layers contribute less to the final prediction. This
trend suggests that the later transformer blocks are strong
candidates for pruning, reinforcing the effectiveness of our
block reduction strategy for improving model efficiency.

Figure 1. Block Relevance Analysis for EquiformerV2. This
figure illustrates the contribution of each transformer block in
EquiformerV2 to the final prediction. The model consists of eight
transformer blocks, f1 to f8, with relevance decreasing in the
deeper layers. The results suggest that later blocks are strong
candidates for pruning to improve efficiency with minimal perfor-
mance loss.

A.2. Block Reduction and Distillation in Pre-
training for EquiformerV2

Pre-training setting: While GemNet-OC has publicly
available pre-trained weights on all four JMP datasets,

EquiformerV2 only provides pre-trained weights for OC20
or OC22 individually. To ensure a fair and consistent
comparison, we initialize the EquiformerV2 backbone with
the FAIRChem pre-trained weights (EquiformerV2-31M-
S2EF-OC20-All+MD). We then pre-train the model follow-
ing the JMP pre-training paradigm, using a uniform balanc-
ing strategy with 2M samples from each upstream dataset,
totaling 8M samples. The pre-training is conducted over 2
epochs using 4 A100 GPUs, with a total compute time of
12 A100 GPU-days.

After pre-training, we apply block reduction (BR) and
knowledge distillation (KD) following the approach out-
lined in Section 4.2 of the main paper. For block reduction,
we sequentially remove later blocks, constructing smaller
models with 7, 6, 5, and 4 transformer blocks. Since re-
moving blocks may lead to performance degradation, we
conduct a brief KD phase to recover performance for each
pruned model. To manage computational cost, we limit the
KD phase to 1.5% of the pre-training size. This process
requires approximately 63 A100 GPU-hours.
Observations: Appendix Table 1 presents the force
MAE performance across various pre-training tasks for
EquiformerV2. Consistent with GemNet-OC results in the
main paper, we observe that removing later blocks leads
to a proportional performance drop, confirming that deeper
layers contribute less to the final prediction. Applying
knowledge distillation after block reduction considerably
improves performance, mitigating much of the accuracy
loss. For example, in the 4-block model, KD reduces the
performance gap with the teacher model from -50.9 meV/Å
to -5.9 meV/Å for OC20 and from -40.4 meV/Å to -10.3
meV/Å for OC22. Similar gains are observed for ANI-1x
and Transition-1x, highlighting the effectiveness of KD in
compensating for the loss of capacity from pruning.

These results reinforce the effectiveness of our block
reduction and KD approach across different model archi-
tectures, demonstrating that smaller, more efficient models
can retain strong predictive accuracy with minimal fine-
tuning overhead. Next, we evaluate the performance of
these pruned models on downstream tasks.

A.3. Evaluation on Downstream Tasks using
EquiformerV2

We evaluate the impact of our block reduction and pre-
training knowledge distillation on downstream tasks, fol-
lowing the fine-tuning setup in Section 4.3. Distillation was
applied only during pre-training to retain useful representa-
tions before fine-tuning.

Appendix Figure 2 presents the results across multiple
tasks. In Spice and QM9, the 7-block models achieve
comparable or better performance than the 8-block teacher
model, demonstrating that EquiformerV2 can be effectively
compressed while maintaining accuracy for some tasks. In



Table 1. Force MAE Evaluation During Pre-training of EquiformerV2. We analyze the impact of block reduction (BR) on pre-training
performance for EquiformerV2, comparing results with and without knowledge distillation (KD). The table reports force MAE (meV/Å)
across the OC20, OC22, ANI-1x, and Transition-1x datasets. Similar to GemNet-OC, we observe that later blocks contribute less to the
final prediction, and KD mitigates performance degradation relative to the full model.

# of Blocks OC20 OC22 ANI-1x Transition-1x

BR 4 77.0 (-50.9) 71.5 (-40.4) 185.5 (-142.4) 69.6 (-52.0)
+ KD 4 32.0 (-5.9) 41.4 (-10.3) 68.8 (-25.7) 26.9 (-9.3)

BR 5 51.1 (-25.0) 54.1 (-23.0) 85.4 (-42.3) 40.8 (-23.2)
+ KD 5 30.3 (-4.2) 38.2 (-7.1) 64.2 (-21.1) 24.3 (-6.7)

BR 6 35.2 (-9.1) 40.9 (-9.8) 60.1 (-17.0) 25.6 (-8.0)
+ KD 6 29.2 (-3.1) 35.3 (-4.2) 58.0 (-14.9) 21.8 (-4.2)

BR 7 27.9 (-1.8) 33.4 (-2.3) 42.0 (1.1) 19.9 (-2.3)
+ KD 7 27.4 (-1.3) 32.8 (-1.7) 53.4 (-10.3) 19.7 (-2.1)

EquiformerV2 (Teacher) 8 26.1 31.1 43.1 17.6

Figure 2. Evaluation on downstream tasks using EquiformerV2. We assess the performance of EquiformerV2 across various down-
stream tasks after applying block reduction (BR) and knowledge distillation (KD). Performance is reported in meV/Å for force targets,
meV for the QM9 energy target, and eV for the QMOF band gap target. The teacher model refers to the original EquiformerV2 with 8
transformer blocks.

contrast, rMD17 and QMOF show a decline in performance
as blocks are removed, even when distillation is applied.
This suggests that the 31M-parameter teacher model was al-
ready compact, leaving little room for pruning without sac-
rificing accuracy.

Distillation is most beneficial at 4 and 5 blocks, consid-
erably recovering performance lost due to pruning. How-
ever, for 6 and 7 blocks, the gains from distillation diminish,
as block reduction alone is sufficient for maintaining accu-
racy—except in MD22, where distillation leads to improved
results over the full model.

These results highlight that while block reduction and
knowledge distillation were effective for GemNet-OC, their
impact on EquiformerV2 is mixed. One possible reason is
that our pre-training duration for EquiformerV2 was limited
to 8M samples compared to 120M samples in JMP, con-

strained by computational resources, which may have pre-
vented the models from fully capturing useful representa-
tions. Additionally, EquiformerV2-31M might be too small
to benefit from block reduction, as reducing blocks further
constrains its capacity.

B. Training from Scratch
In the main paper, all experiments use models initialized
from the JMP-L pre-trained checkpoint. Specifically, we
apply block reduction to create smaller backbones by prun-
ing layers from the full model—for example, constructing
a 5-block GemNet-OC by removing the final block from a
6-block pre-trained backbone. But what if we instead train
the 5-block model from scratch? How does this compare to
pruning a pre-trained full-sized model?

Appendix Figure 3 compares the downstream perfor-



Figure 3. Training from scratch vs. block reduction of a pre-trained model. Validation performance of smaller models across five
downstream tasks when initialized from scratch (brown dashed line) versus when derived through block reduction from a pre-trained
6-block JMP-L model (blue line). The results highlight the importance of pre-training, as reduced models retain significantly better
performance when initialized from a larger pre-trained backbone.

Figure 4. Block Relevance Analysis (Shown in Main Paper).
GradCAM-based importance scores for each block in JMP-L, pre-
viously presented in the main paper. The first block, f1, represents
the embedding output, while f2 to f7 correspond to the six inter-
action blocks of GemNet-OC.

Figure 5. Layer-Wise Ablation Study. Validation MAE on
rMD17 when individually removing each interaction block (f2 to
f7) from the 6-block pre-trained GemNet-OC model. The results
show that removing later blocks leads to smaller performance loss,
supporting their lower importance as suggested by GradCAM.

mance of models trained from scratch (brown dashed line)
with those obtained via block reduction from a pre-trained
model (blue line). Across all tasks, training from scratch
consistently underperforms the block-reduced counterparts,
often by a large margin. These results highlight the effec-
tiveness of our block reduction strategy and demonstrate the
importance of leveraging pre-trained weights, even when
deploying smaller backbones.

C. Layer-by-Layer Analysis of Block Reduc-
tion

As discussed in Section 3.2 of the main paper, our block
reduction strategy is guided by block importance scores
obtained using GradCAM. For instance, to create a 5-
block GemNet-OC backbone, we remove the least impor-
tant block—identified as the final block (f7). However, this
approach assumes that GradCAM accurately reflects func-
tional relevance. Yet, removing a different block might lead
to comparable downstream performance, which would cast
doubt on the reliability of GradCAM for guiding pruning
decisions.

To evaluate the validity of the GradCAM scores, we
conduct a layer-by-layer ablation, removing one interaction
block at a time—starting from the first non-embedding layer
(f2) through to the final interaction block (f7)—resulting in
six separate runs. We note that removing f7 matches the
5-block configuration used in the main paper. To manage
computational cost, we restrict this analysis to the rMD17
dataset and fix the backbone size to 5 blocks.

In Appendix Figures 4 and 5 we present the block rel-
evance scores and the corresponding downstream perfor-
mance from the layer-by-layer ablation analysis, respec-
tively. As predicted by GradCAM, removing later blocks
leads to less performance degradation compared to earlier
ones. Overall, the trend in performance drop from the
first interaction block (f2) to the last (f7) aligns well with
the relevance scores—except for f3 and f4, where remov-
ing f4 leads to a larger drop than f3. This suggests that
GradCAM provides more reliable importance estimates for
deeper blocks closer to the prediction head.
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