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8. Difference between dPEN, PEN, and T-PEN
The Progressively Expanded Neuron (PEN) [28] uses the
Maclaurin series with fixed coefficients to expand neurons,
limiting adaptability. Deep PEN (dPEN) [29] introduces
dynamic but non-trainable adjustments. T-PEN, proposed
here, enhances flexibility by making wk and pk trainable,
optimizing feature extraction for diverse tasks.

9. Approximation with T-PEN
T-PEN enhances feature maps by expanding Φ into layers
S(k) with trainable parameters (Equation (1) of the main
manuscript):

S(k) =

{
g(w1Φ

p1) k = 1

g(S(k−1) + wkΦ
pk) k > 1

The output YS is BN(Concatenate(S(1), . . . ,S(K))) with
K = 3. Figure 10 compares T-PEN’s approximation of five
functions over epochs 1 to 4000, with each pair of rows (a:
1–2, b: 3–4, c: 5–6, d: 7–8, e: 9–10) showing the first row
with T-PEN layers and the second with traditional convolu-
tions:
• (a) sin(5x) + cos(10y): T-PEN (row 1) converges by

Epoch 4000; convolutions (row 2) are less accurate.
• (b) sin(5x) cos(10y): T-PEN (row 3) matches by Epoch

4000; convolutions (row 4) lag.
• (c) exp

(
−x2+y2

2

)
sin(5x): T-PEN (row 5) refines by

Epoch 500, matching by 4000; convolutions (row 6) are
less precise.

• (d) sin(xy) + cos(x + y): T-PEN (row 7) converges by
Epoch 4000; convolutions (row 8) are less effective.

• (e) |xy| sin(3(x + y)): T-PEN (row 9) approximates ac-
curately by Epoch 4000; convolutions (row 10) show re-
duced accuracy.
T-PEN’s superior modeling of nonlinearities compared

to traditional convolutions boosts NExNet Seg’s segmenta-
tion accuracy (Table 1).

10. γ Value in MaSA
The Manhattan Self-Attention (MaSA) [30] uses a decay
factor γ to control spatial attention, defined in Equations
(4) and (5) of the main manuscript:

DHnm
= γ|xn−xm|, DWnm

= γ|yn−ym|

A smaller γ (e.g., 0.1) emphasizes local features with steep
decay, while a larger γ (e.g., 0.9) enables longer-range de-
pendencies.

Figure 10. Approximation of target functions over epochs 1
to 4000: (a) rows 1–2 for sin(5x) + cos(10y), (b) rows 3–4

for sin(5x) cos(10y), (c) rows 5–6 for exp
(
−x2+y2

2

)
sin(5x),

(d) rows 7–8 for sin(xy) + cos(x + y), (e) rows 9–10 for
|xy| sin(3(x + y)). Each pair’s first row uses T-PEN layers; the
second uses traditional convolutions.

Figure 11 shows γ’s effect on skin lesion feature maps:
sparse at 0.1, becoming global at 0.9. Figure 12 analyzes
γ’s impact on mean activation and standard deviation for
ISIC 2016 (skin) and CVC Clinic (polyp) datasets, with
variability peaking at γ = 0.9 (0.007 for skin, higher for
polyps). While a higher γ (e.g.@ 0.9) can help capture
broader context in both tasks, setting γ around 0.5 strikes
a good balance between preserving local detail in skin le-
sion segmentation and maintaining stable feature maps for
polyp segmentation.

11. Additional Results for Statistical Analysis

This section provides further statistical insights into
NExNet Seg’s performance compared to U-Net, comple-
menting the main manuscript’s findings.

These tables demonstrate NExNet Seg’s consistent su-
periority in Dice Coefficient over U-Net (as baseline), with



Figure 11. Effect of γ values (0.1, 0.5, 0.9) on MaSA feature maps
for skin lesions.

Figure 12. Statistical impact of γ (0.1–0.9) on MaSA feature map
statistics for skin (ISIC 2016) and polyp (CVC Clinic) datasets.

Table 5. Performance comparison between NExNet Seg and U-
Net in terms of mean Dice Coefficient (DC) and standard deviation
(Std). Best results in bold.

Dataset Method Dice Coefficient Std

ISIC 2018 NExNet Seg (Ours) 0.848 0.003
U-Net 0.813 0.006

PH2 NExNet Seg 0.926 0.002
U-Net 0.873 0.006

Kvasir-Seg NExNet Seg 0.939 0.003
U-Net 0.775 0.008

CVC-Clinic NExNet Seg 0.930 0.004
U-Net 0.856 0.012

statistically significant improvements (p < 0.05) on most
datasets, except ISIC16 and CVC-Clinic, where the differ-
ences are not significant (p > 0.05).

12. Detailed Analysis of Limitations
While NExNet Seg performs well in medical image seg-
mentation, several limitations require attention.

Overfitting with T-PEN Layers. The ablation study
(Table 2) shows T-PEN layers cause overfitting, with IoU
dropping on ISIC17 (0.701 to 0.694) and CVC Clinic (0.865

Table 6. Statistical analysis comparing NExNet Seg and U-Net
performance across different datasets using Dice coefficient. p-
values below 0.05 (in bold) indicate statistically significant im-
provements.

Dataset p-value Std
ISIC16 0.056 0.004
ISIC17 0.006 0.006
ISIC18 0.029 0.004
PH2 0.009 0.003
CVC-Clinic 0.065 0.004
Kvasir 0.017 0.004

to 0.838) without MaSA or SSL, likely due to rapid param-
eter adjustments (wk, pk) in Equation (1). This is more pro-
nounced in smaller datasets like ISIC17 (2,000 images) vs.
ISIC18 (10,000 images) [5]. Regularization (e.g., dropout,
L2) or enhanced augmentation (e.g., color jittering) could
improve generalization.

Dataset-Specific Performance Variations. NExNet
Seg lags behind SegFormer (IoU 0.905 vs. 0.876 on CVC
Clinic, Table 1), possibly due to MaSA’s horizontal-vertical
decomposition (Equations (3)–(5)) struggling with irregular
polyp shapes. Hybrid attention or T-PEN adjustments (S(k))
and γ fine-tuning could enhance performance.

Generalization to Other Medical Imaging Tasks.
Evaluation is limited to skin (ISIC, PH2) and polyp (Kvasir-
Seg, CVC-Clinic) datasets. Generalizing to MRI, CT, or ul-
trasound may be hindered by T-PEN’s nonlinear expansions
and MaSA’s 2D design.

Hardware Dependency and Clinical Deployment.
Training requires an NVIDIA A-100 (40 GB), posing a bar-
rier for resource-limited clinics with low-memory devices
(4–8 GB). With 30.4 million parameters and a batch size of
16 over 150 epochs, pruning, quantization, or pre-trained
fine-tuning could enhance accessibility.
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