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Abstract

Multiframe processing has become an essential component
in mobile devices to produce images with better qualities,
such as reduced noise and improved dynamic range. How-
ever, processing multiple frames poses challenges in system
memory and computation power, especially for high reso-
lution images. In this work we present a compressed do-
main multiframe processing pipeline that operates in a com-
pressed domain defined by an encoder-decoder and vector
quantization. The encoder-decoder learns the features from
the raw frame and produces the RGB image. Vector quan-
tization is used to quantize the feature to achieve compres-
sion. In this compressed domain we show common mul-
tiframe processing functions, including demosaicing, de-
noising, image registration, image deghosting and HDR
blending. Experiments on real mobile captures demonstrate
the effectiveness of the proposed compressed domain multi-
frame processing pipeline. The proposed method achieves
image quality similar to non-compression methods with less
memory and computation requirement.

1. Introduction
Mobile cameras suffer from low image quality because of
the small optical lenses and imaging sensor. To improve the
image quality, multiframe processing (MFP) is commonly
used. Instead of capturing one frame from the scene, the
camera captures multiple frames and outputs a single image
by blending these frames. MFP can produce images with
better details, less noise and high dynamic range (HDR).
Meanwhile, the imaging resolution has been increasing in
recent years. Several smartphone cameras today can capture
images with 200 megapixels. However, for high resolution
imaging, capturing and processing multiple frames requires
high system memory. For example, when a 200-megapixel
image is considered, each raw frame takes 400MB to store
assuming 16-bit processing, and a demosaiced image takes
more than 1GB. In this case, processing multiple frames is
extremely challenging.

Image compression techniques have been proposed to

tackle the problem of high memory demand in storing im-
ages. Conventional methods, such as JPEG [38], BPG [6]
and PGF [33], achieve high compression ratio and high re-
construction fidelity, but the compressed data cannot be di-
rectly used for image signal processing (ISP) tasks, mean-
ing the decompression needs to be applied before any op-
erations can be performed. In recent years, learning based
compression methods have achieved superior compression
ratio using techniques such as autoencoder, transformer,
compressed sensing and vector quantization [2, 4, 7, 32,
34, 37], and the compressed data have been used for var-
ious image processing and computer vision tasks, including
denoising, warping, object detection, semantic segmenta-
tion and object detection [23, 24, 43]. All these work, how-
ever, consider only single image processing, and the MFP
in the compressed domain has been under-explored. In fact,
moving the processing to the compressed domain not only
reduces system memory but also reduces the computation
burden, because the ISP tasks are applied to a reduced data
volume. Motivated by this, we investigate processing mul-
tiple frames in the compressed domain to enable MFP for
high-resolution imaging on mobile devices.

To build the MFP pipeline in the compressed domain,
several features should be considered when designing such
a domain. First, the compressed domain should be natu-
rally suitable for ISP downstream tasks, and no minimal de-
compression is required before images can be processed.
Second, similar to an ISP pipeline, the inputs to the com-
pression algorithm should be raw frames with certain color
filter array patterns, and the decompression algorithm out-
puts the RGB images. Third, image warping is essential in
MFP because multiple frames need to be first registered be-
fore they can be blended, so the compressed domain should
be warpable without introducing artifacts in the decom-
pressed outputs. Fourth, to enable the HDR imaging, the
compressed domain should have the capability to process
images with extended dynamic range. Fifth, certain image
analysis tasks in ISP, such as semantic analysis, do not need
a full resolution image, so the compressed domain should
be interpretable in a way, also called progressive encod-
ing [43], that partial data can be used for image processing
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(c) Proposed multiframe compressed domain processing

Figure 1. Comparison between image processing pipeline with compression model. (a) Single image compressed domain processing
pipeline applies ISP tasks on the compressed data [43]. (b) Computer vision tasks are applied on selected latent representation and output
the results in the pixel domain [23]. (c) Proposed compressed domain multiframe processing pipeline.

tasks to reduce computation.
In this paper, we present a compressed domain incorpo-

rating these features. The compressed domain is defined by
an encoder-decoder and a vector quantization (VQ) mod-
ule. The encoder-decoder adopts the U-Net [30] structure
to learn the multiscale features from the input raw frame,
and the VQ is then used to quantize and compress the fea-
tures. To enable warping in the compressed domain, we
introduce augmentation during the training so that the de-
coder can process warped features, and for HDR imaging,
we propose to use multiple encoders, each corresponding to
an individual exposure value (EV), and a single decoder. In
this compressed domain, we develop an MFP pipeline that
achieves demosaicing, denoising, registration, deghosting
and HDR blending. This demonstrates how the compressed
data can be utilized in different ways for ISP tasks.

The major contributions of this paper can be summarized
as follows:
• We propose an image compression method with an

encoder-decoder and a VQ module. The encoder-decoder
learns the multi-scale features from the input raw image
that is suitable for downstream ISP tasks, and the VQ
compressed the features, achieving 3.3 times compres-
sion.

• We develop an MFP pipeline in the compressed do-
main that achieves demosaicing, denoising, registration,
deghosting and HDR blending.

• Experiments with data captured from real mobile de-
vices demonstrate the effectiveness of the proposed MFP
pipeline.

2. Related work

2.1. Compression methods

Image compression aims to reduce the image data volume
by removing the redundant and unrelated information with
little or without degradation in the quality of the image.
Conventional lossy compression methods typically contain
three stages: transform, quantization and entropy coding.

A linear transformation, such as DCT, first decorrelates the
image into a set of coefficients in the transformed domain.
Then the quantization method maps the continuous coef-
ficients to several discrete values. Two types of quantiza-
tion methods are usually considered: scalar quantization
and vector quantization. Scalar quantization maps each co-
efficient to a discrete value, and vector quantization maps
a vector or a block of coefficients with an index of a vec-
tor in a codebook [13]. In comparison, vector quantiza-
tion achieves higher compression ratio [20]. Entropy coding
further losslessly compresses the indexes, approaching the
lower bound established by Shannon’s source coding the-
orem. In the past decades, conventional methods, such as
JPEG [38], BPG [6] and PGF [33], have achieved satisfac-
tory Rate-Distortion (RD) performance.

Learned image compression are now state-of-the-art
compression methods in research. Ballé et . [4] pioneered
this by proposing the first CNN-based image compression
model. Thereafter, various CNN-based methods have been
proposed. Among these methods, variational auto-encoder
(VAE) has been the most popular one [5, 8, 10, 18, 22]. To
improve the entropy model, Minnen et al. [27] proposed a
local context model, and Guo et al. [14] proposed a casual
context model. Other than CNN, some work used recurrent
neural networks for image compression [17, 35, 40]. Gen-
erative models have also been used for this task. Torfason
et al. [36] presented joint image compression and classifica-
tion with Generative Adversarial Networks (GAN). Agusts-
son et al. [3] provided the first study of using GAN for im-
age compression, and Mentzer et al. [26] further studied
each components in GAN. Recently diffusion-based com-
pression has proposed. Hoogeboom et al. [15] and Ghouse
et al. [12] proposed to enrich details using diffusion for im-
ages compressed with autoencoder. Relic et al. [29] pro-
posed to use foundation diffusion models to remove quan-
tization error. Yang et al. [42] proposed to use conditional
diffusion models for end-to-end image compression. With
the development of vision transformers, transformer-based
image compression methods have been proposed. Zhu et
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al. [44] proposed to use swin transformer for image com-
pression. Qian et al. [28] proposed a transformer-based en-
tropy model. Koyuncu et al. [21] proposed a transformer-
based context model. Liu et al. [25] proposed image com-
pression with mixed transformer-CNN architectures.

2.2. Compressed domain processing
Deep learning has achieved superior performance in various
image processing tasks [1, 7, 11, 16]. However, compressed
domain processing has received less attention. Xu et al. [41]
used a gate module to select DCT features for image classi-
fication and segmentation. Shen et al. [31] proposed a DCT-
mask to improve the instance segmentation task. As for
learned compression method, Torfason et al. [36] proposed
image classification and segmentation in the compressed
domain. The compressed latent representation was directly
sent to a computer vision task network. To reduce the bitrate
in this scheme, Liu et al. [23] proposed to use only selec-
tive channels with high information entropy for the vision
tasks, and this was further improved with a learned method
for channel selection [24]. Wang et al. [39] also introduced
a feature selection method using Gaussian approximation.
Codevilla et al. [9] proposed to jointly train the compression
model and the vision tasks to obtain a better deep represen-
tation that was suitable for other vision tasks. Ji et al. [19]
proposed a vision transformer in the compressed domain
for image classification. These work differ compressed do-
main ISP in two aspects. First, these work focus on high-
level vision tasks, but the compressed domain ISP focuses
on low-level image processing and enhancement. Second,
the vision tasks directly estimate pixel domain results based
on the compressed domain feature, while the compressed
domain ISP needs to run tasks entirely in the compressed
domain, which means any operation should be performed
directly on the latent features.

Recently, Zhang et al. [43] proposed a compressed do-
main ISP that demonstrated compressed domain denoising.
They also demonstrated that affine registration matrix could
be estimated from the compressed domain, but it didn’t ap-
ply warping to the latent features. So far there has been no
work on multiframe processing in the compressed domain.
The comparison between different methods are summarized
in Figure 1.

3. Method
In this section we describe how to design the compressed
domain and develop the MFP pipeline in this domain.

3.1. Compression Model
As discussed in previous sections, the compressed domain
should be suitable for downstream MFP tasks and provide
the interpretability for high level tasks. Here we define the
compression space with an encoder-decoder and a vector

Features Index map Size of codebook/bits

256×256×4 256×256 2048/11
128×128×8 128×128 2048/11
64×64×16 64×64 2048/11
32×32×32 32×32 1024/10
16×16×64 16×16 1024/10
8×8×128 8×8 1024/10
4×4×512 4×4 1024/10

Table 1. The dimensions of the proposed compression model, as-
suming a 256× 256 input.

quantization (VQ) module. This process is illustrated in
Figure 2. The input to the encoder is the raw image data,
and the output is the corresponding RGB image. Differ-
ent from [43] where the encoded image is represented by
a single feature matrix, the proposed method adopts the U-
Net structure that produces multiscale features, and the VQ
maps the continuous feature into discrete embeddings to
achieve compression. The advantages of this compression
scheme are two-fold. First, the multiscale features are nat-
urally suitable for progressive encoding. The features close
to the bottleneck contain more low-frequency structural in-
formation of the image, and the features with larger spa-
tial dimension contain more high-frequency details. This
can be ensured by adding loss constraint during the train-
ing period. Second, this structure allows us to compress
features with various bit-depth based on their importance.
Bottleneck features are quantized with less bits (more com-
pression), and the features with more detail information are
quantized with more bits (less compression). The details
of the network dimensions and the codebook size are sum-
marized in Table 1. With this setup, 3.3 times compression
compared to the input, or 9.9 times compression compared
to the RGB image, can be achieved, assuming 12-bit raw
input. Note that here we do not consider entropy coding,
which will further increase the compression ratio. One may
question that de-quantization is still needed to process the
images. The benefits of such a compression method is better
illustrated with the system memory analysis. As shown in
Figure 3, traditional image processing stores the full frame
image in DRAM (dynamic random access memory), and
the full frame is used by the processing unit. With the pro-
posed method, only the bitstream is stored in DRAM, and
we adopt tile-based processing, so only a small set of coef-
ficients are dequantized for ISP tasks, further reducing the
required computing memory.

Although this compression method suffices for single
frame processing, extra considerations are necessary for
MFP functions in the compressed domain. For handheld
captures, MFP needs to warp the input frames to a tar-
get frame before any analysis and blending can be per-
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Figure 2. The proposed compression model. The compressed domain is defined by an encoder-decoder and a VQ module. Random
warping is added during training to increase the warpability of the compressed domain, and downsampled GT is used to train subset of the
decoder to achieve compressive encoding.
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Figure 3. Comparing system memory between traditional ISP and
the proposed compressed domain ISP. The proposed method re-
duces the required DRAM of the system by reducing the data vol-
ume and using tile-based processing.

formed. As shown in Section 4.2.1, image warping in the
compressed domain can result in artifacts in the output im-
age. To avoid this, augmentation is applied when training
the compression model. During the training period, ran-
dom warping is applied to the features in the compressed
domain, and the same warping is also applied to the label
image. This increases the warpability of the compressed
space.

In high dynamic scenes, multiple frames with varying
exposures are captured. In order to analyze and blend
these frames, the encoder needs to map them into the same
compressed domain. A single encoder may be trained to
achieve this functionality, but the different noise levels and
the extended dynamic range will reduce the capability of the
encoder-decoder and hurt the quality of the output images.
Here we propose to use an individual encoder for each ex-

posure and a single decoder to produce the blended HDR
image. To ensure that these encoders map the frames into
the same space, all the encoders and the decoder are jointly
trained with respect to the losses in both pixel domain and
feature domain. The loss function is defined as

L = Ex0,y0
[Lpixel(D(E0(x0)), y0)]

+Ex−,y− [Lpixel(D(E−(x−)), y−)]

+λEx0 [Lfeature(E0(x0), E−(x0))],

(1)

where E0 and E− represent the encoders for the normal ex-
posure frame and the short exposure frame respectively, and
D represents the decoder. (x0, y0) and (x−, y−) represent
the raw input and the corresponding RGB output pair for
normal exposure and short exposure cases. Here we assume
one short exposure frame, but this can be extended to more
frames. Notice that a loss is defined in the compressed do-
main, and we find this stabilizes the training and forces the
encoders to map the images into the same space. However,
a small λ should be used to avoid hurting the capability of
encoders.

3.2. Compressed domain MFP pipeline
Common MFP functions include demosaicing, denoising,
image registration, deghosting and HDR blending. Here
we explain how to achieve these functionalities to build the
compressed domain MFP pipeline.

3.2.1. Demosaicing and denoising
The compressed domain is defined by training an encoder-
decoder to map a raw image to an RGB image, which im-
plicitly achieves demosaicing. Similarly, image denoising
can be included by adding noise to the training data. Al-
ternatively, a separate denoiser can be trained in the com-
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Figure 4. The proposed registration module. One of the feature
map from the largest-scale feature resembles a gray-scale image,
so registration warping matrix can be estimated from this feature
map.

pressed domain [43]. For MFP, denoising can also be
achieved by averaging multiple frames, and this still applies
in the compressed domain.

3.2.2. Image registration
To analyze and process multiple frames, all the frames need
to be aligned to a target frame. This compensates for the
camera motion, and sometimes objects dynamics, during
the capture time. In normal camera ISP, this can be achieved
with image registration and warping using homography or
other warping methods. In the compressed domain, we can
also calculate the warping matrix for the image features and
warp the features accordingly. Figure 4 visualizes one fea-
ture map from the largest-scale feature, and it is obvious that
this feature map resembles a low-resolution gray-scale ver-
sion of the image. Thus we can estimate the warping matrix
from this feature map of the multiple frames. The warping
matrix is then scaled to match the spatial resolution of the
multi-scale features and applied to warp the features. This
process is illustrated in Figure 4.

3.2.3. Image deghosting
To blend registered frames, an ISP algorithm needs to ana-
lyze the motion in the scene and blend only the pixels that
match across frames. Here we use a network to predict the
blending map in the compressed domain, and the network
structure is shown in Figure 5. We used only the first three
feature matrices to predict the motion map. As discussed
in the previous section, feature maps with larger spatial di-
mension contain more detailed information that can better
capture finer motions in the image. The blend map is then
scaled to match the spatial resolution of the multi-scale fea-
tures and used to blend the features.

3.2.4. HDR blending
To obtain an image with higher dynamic range, HDR blend-
ing blends images with different EVs so that details in the
saturated region in the normal exposure frame can be re-

Frame 1

Frame 2
…

…

Figure 5. The proposed deghosting network. Only the first three
largest-scale features that contain more details about the image are
used for motion map estimation.

…

Normal 
exposure frame

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Short frame

…

…

Alpha blend

Alpha blend

…
…

Scale to match resolution

Figure 6. The proposed HDR blending module. The saturation
map can be estimated from one of the image feature maps by
thresholding it. The map is then scaled to match the spatial res-
olution of the feature for HDR blending.

covered from short frames. This is typically done by sub-
stituting the saturated pixels in the normal exposure frame
with short frames. Similar to image registration in the com-
pressed domain, HDR blending in the compressed domain
also takes advantage of the observation that the feature maps
assemble low resolution images. Based on this, a threshold
can be used to obtain a binary saturation map indicating the
saturated region, and the map is then used to blend the fea-
tures. This process is illustrated in Figure 6.

3.2.5. Full pipeline
The proposed MFP pipeline is illustrated in Figure 7. Here
we consider the HDR imaging with two raw frames. Af-
ter the features of the two frames are computed by the two
encoders, the features are first registered to the reference
normal exposure frame. Then both the saturation map and
the deghosting blend map are estimated from the features
and used to blend the two frames.
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Figure 7. The proposed compressed domain MFP pipeline.

4. Experiments

4.1. Implementation Details
We conducted the experiments using a commercial smart
phone camera. For each image, a normal exposure frame
and a short exposure frame were captured. The image res-
olution was 6120 × 8160. For tile-based processing, the
resolution of each tile was 1024 × 1024. Overlapping be-
tween adjacent tiles were applied to remove boundary arti-
facts. For training the networks, the deghosting blend maps
and the groundtruth RGB images were obtained from the
built-in ISP. For the compression model, SSIM and L1 loss
were used in the pixel domain, and L2 loss was used in the
compressed domain. For inference, the built-in tone map-
ping was applied for visualization.

4.2. Results
4.2.1. Compression model
First we evaluated the compression model. We captured
26 images for testing and evaluated the reconstruction qual-
ity. In average, the compression model achieved 49.31dB
in PSNR and 0.9962 in SSIM. We also show visual results
in Figure 8, where results with and without VQ are both
included for comparison. In the first sample, a detail-rich
patch is zoomed in. The compression model achieves visu-
ally lossless quality, and no visual artifact is observed. In
the second example, a flat region is selected, where quanti-
zation artifacts, such as contour, tend to exist. The proposed
method, however, shows no such artifacts.

To demonstrate the effectiveness of warping augmenta-
tion during training, Figure 9 shows the reconstructed RGB
images after the image has been warped in the compressed
domain. When the model was not trained with augmenta-
tion, warping artifacts and detail loss could be observed in
the output image. To show that the loss in the feature do-
main is necessary in training the HDR compression model,
Figure 10 shows the output HDR images. When the fea-
ture domain loss was not applied, artifacts showed up at the
boundary of the saturated region and the boundary of the
tile.

4.2.2. MFP functions
Image registration was evaluated by feeding the handheld
captures into the pipeline, and we disabled the deghost-
ing. The results are shown in Figure 11. When registration
was not applied, the output image showed ghosting artifacts
because of the hand motion, and the proposed registration
module was able to detect and compensate for the hand mo-
tion.

Image deghosting was evaluated by feeding tripod cap-
tures with motion objects into the pipeline. The blended im-
age and the motion map are shown in Figure 12. The results
in the zoomed-in region shows that the proposed method
can detect both large object motion (car) and small scene
dynamics (tree) in the compressed domain.

The HDR blending module was evaluated with HDR
scenes, and the results are shown in Figure 13. The Sat-
uration map shows that the proposed method is able to ac-
curately find the saturated region, even in the foliage area.

Lastly we tested the compressed domain denoising by
averaging multiple frames, and the results are shown in Fig-
ure 14. By averaging more frames, we could recover more
details.

4.3. Computation analysis
Compressed domain MFP not only reduces system memory
required for data storage, it also reduces the computation.
Table 2 compares the floating-point operation (FLOP) re-
quired for HDR blending in both the pixel domain and the
compressed domain. For HDR blending, compressed do-
main processing saves computation by 50%.

4.4. Limitations
The proposed method has its limitations. The success of im-
age registration relies on accurate homography estimation,
using features such as SIFT. However, in low light condi-
tions or in smooth regions, feature matching may fail, re-
sulting in inaccurate registration. When the scene is not
well-lit, the deghosting module tend to treat noisy regions
as dynamic regions, prohibiting the denoising through mul-
tiframe blending. That being said, the proposed method
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(a) Full resolution image (b) Encoder-decoder (c) Encoder-decoder + VQ (d) Groundtruth

Figure 8. Example output images from the compression model. For each example, (b) the Encoder-decoder only, (c) the proposed method
(Encoder-decoder + VQ), and (d) the groundtruth are shown for comparison.

(a) Without augmentation (b) With augmentation

Figure 9. Comparison between augmentation free training and the
proposed training method for image warping. (a) The compression
model trained without warping augmentation. (b) The proposed
training method.

(a) HDR scene (b) Pixel domain loss (c) Proposed

Figure 10. Comparison between training with only the pixel do-
main loss and the proposed training method for HDR blending.
(a) The HDR scene. (b) The compression model trained with only
pixel domain loss. (c) The compression model trained with both
pixel domain loss and feature domain loss.

can be further improved with adaptive tuning regarding the
noise or the lighting conditions.

(a) Without registration (b) With registration

Figure 11. Results of compressed domain registration.

Operations Pixel domain Compressed domain

Sat map 512×512×3 256×256
256×256+128×128+

Inverse sat map 512×512×1 64×64+32×32+16×16+
8×8+4×4
256×256×4+128×128×8+

Sat map × frame1 512×512×1 64×64×16+32×32×32+
16×16×64+8×8×128+4×4×512

Inv map × frame2 512×512×3 same as above
Blending 512×512×3 same as above
Total FLOPs 3407872 1725776

Table 2. Comparing the required number of floating-point opera-
tions (FLOP) for HDR blending in both the pixel domain and the
compressed domain. The saturation map is first obtained from the
data, and then the inverse map, showing pixels not saturated, is
computed. The two maps are used to blend (weighted sum) the
two frames.
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(a) Dynamic scene (b) Without deghosting (c) With deghosting

(d) Motion map (e) Without deghosting, zoomed-in view (f) With deghosting, zoomed-in view

Figure 12. Results of compressed domain deghosting. The deghosting model was able to detect both large object motion and small scene
dynamics.

(a) LDR (b) HDR (c) Saturation map

Figure 13. Results of compressed domain HDR blending.

(a) Single frame (b) 2 frame blending (c) 4 frame blending

Figure 14. Results of compressed domain denoising by averaging
multiple frames.

5. Conclusion
We presented a compressed domain MFP pipeline that pro-
cesses and blends multiple frames in the learned com-
pressed domain. This compressed domain achieved 3.3
times compression with respect to the input raw frame.
In this compressed domain we presented MFP functions,
including demosaicing, denoising, registration, deghosting
and HDR blending, and we also showed that moving op-
erations to the compressed domain reduced the computa-
tion burden. As part of future work, we plan to investigate
more features in the compressed domain that enable more
MFP functions. For example, how to apply non-linear op-
erations in the compressed domain for tone-mapping, and
how to add scalability to the compressed domain for resiz-
ing.
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Joint autoregressive and hierarchical priors for learned im-
age compression. Advances in neural information processing
systems, 31, 2018. 2

[28] Yichen Qian, Ming Lin, Xiuyu Sun, Zhiyu Tan, and
Rong Jin. Entroformer: A transformer-based entropy
model for learned image compression. arXiv preprint
arXiv:2202.05492, 2022. 3

[29] Lucas Relic, Roberto Azevedo, Markus Gross, and Christo-
pher Schroers. Lossy image compression with foundation

1962



diffusion models. In European Conference on Computer Vi-
sion, pages 303–319. Springer, 2024. 2

[30] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference,
Munich, Germany, October 5-9, 2015, proceedings, part III
18, pages 234–241. Springer, 2015. 2

[31] Xing Shen, Jirui Yang, Chunbo Wei, Bing Deng, Jian-
qiang Huang, Xian-Sheng Hua, Xiaoliang Cheng, and Kewei
Liang. Dct-mask: Discrete cosine transform mask rep-
resentation for instance segmentation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 8720–8729, 2021. 3

[32] Wuzhen Shi, Feng Jiang, Shaohui Liu, and Debin Zhao. Im-
age compressed sensing using convolutional neural network.
IEEE Transactions on Image Processing, 29:375–388, 2019.
1

[33] Christoph Stamm. A new progressive file format for lossy
and lossless image compression. In Proceedings of the
International Conferences in Central Europe on Computer
Graphics, Visualization and Computer Vision, Plzen, Czech
Republic, pages 4–8, 2002. 1, 2

[34] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc
Huszár. Lossy image compression with compressive autoen-
coders. arXiv preprint arXiv:1703.00395, 2017. 1

[35] George Toderici, Damien Vincent, Nick Johnston, Sung
Jin Hwang, David Minnen, Joel Shor, and Michele Covell.
Full resolution image compression with recurrent neural net-
works. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 5306–5314, 2017. 2

[36] Robert Torfason, Fabian Mentzer, Eirikur Agustsson,
Michael Tschannen, Radu Timofte, and Luc Van Gool. To-
wards image understanding from deep compression without
decoding. arXiv preprint arXiv:1803.06131, 2018. 2, 3

[37] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. Advances in neural information pro-
cessing systems, 30, 2017. 1

[38] Gregory K Wallace. The jpeg still picture compression stan-
dard. Communications of the ACM, 34(4):30–44, 1991. 1,
2

[39] Zhenzhen Wang, Minghai Qin, and Yen-Kuang Chen. Learn-
ing from the cnn-based compressed domain. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pages 3582–3590, 2022. 3

[40] Maurice Weber, Cedric Renggli, Helmut Grabner, and Ce
Zhang. Observer dependent lossy image compression. In
Pattern Recognition: 42nd DAGM German Conference,
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