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7. Hyperparameters
7.1. Classification
Hyperparameters for the fine-grained classification bench-
marks are given in Tab. 5. For Aircraft, DTD, and Food101,
we search for the best-performing parameters on the valida-
tion set. For each result in Tab. 3, we repeat each experiment
3 times with different random seeds. For the datasets with
validation sets (Aircraft, DTD, Food101), we use the best-
performing parameters from that dataset’s validation run.
For the other datasets (CUB, Pets, Cars), we use the pa-
rameters with the best average validation performance on
Aircraft and DTD, since these two datasets are most similar
to the other 3 in terms of size. We also include the dataset
statistics in Tab. 6. Note that for Full FT and Attention FT,
we include a separate LR factor for the backbone param-
eters that is multiplied with the base LR which is used for
the linear head. Similarly, for LoRA, PETAH, Consolidator,
and SSF, we use a factor for the PEFT parameters. As data
augmentation, we only use random cropping and horizontal
flipping unless stated otherwise. All experiments were done
using 8 NVIDIA A100 GPUs each with a batch size of 128,
resulting in a total batch size of 1024.

7.2. Detection and Segmentation
Coco Cascade R-CNN: For detection and instance seg-
mentation, we use a Cascade R-CNN with FPN on Coco.
The hyperparameters are mostly the same as in [40] but we
lower the resolution to 640×480. We train for 12 epochs us-
ing a batch size of 8×2. After a 500-step linear warmup, the
LR is reduced in epochs 8 and 11. The optimizer is AdamW
with a base LR of 0.0001 and weight decay of 0.05.

ADE20K Semantic Segmentation: For semantic seg-
mentation, we train for 40K steps using a batch size of
8×4 with the AdamW optimizer and a base learning rate of
0.0002 and weight decay 0.0001. The evaluation resolution
is 2048× 512.

8. EF L1 results
The missing results for the EF L1 from Tab. 3 can be found
in Tab. 7. Similar to the results from the main paper, PETAH
outperforms other adaptation methods. However, due to its
small memory and compute footprint, the EF L1 is substan-
tially worse than the EF L3 and ViT-S.

9. PETAH as regularization
Surprisingly, our PETAH approach is able to outperform
full fine-tuning (FT) on some datasets despite using less

than 1% of total parameters. Effectively, PEFT methods
constrain the optimization to a subspace, which could pre-
vent overfitting. This could be especially important on fine-
grained classification datasets with fewer samples. How-
ever, there is no clear evidence that overfitting causes FT
to perform worse than PEFT, since this phenomenon could
also have a different cause, e.g. easier optimization. To val-
idate our hypothesis and gain further insights into the im-
pact of PEFT on performance, we retrain the EF L7 with
PETAH-2 and full FT with explicit regularization on the 5
smaller classification datasets (See Tab. 8). As regulariza-
tion, we use RandAugment [15] and Dropout [60] before
the classification head. First, we note that both approaches
can profit from external regularization and heavy data aug-
mentation seems to be especially beneficial in these low-
data regimes. Despite a significant gain in performance for
full FT (from 84.56% to 86.48% mean accuracy), PETAH-2
remains the best-performing method with a mean accuracy
of 86.73% which implies that its inherent regularization
effects are well suited for the adaptation of the Efficient-
Former to various vision tasks. However, the gap between
FT and PETAH-2 narrows from 0.99 to 0.25, implying that
overfitting, which is less likely with such strong regulariza-
tion, is the reason why full FT performs worse than PETAH.

10. Pruning Strategy

The experimental setup for task adaptation is the same as
in the previous section. For full fine-tuning and attention-
tuning, we preserve the sparsity mask from pre-training and
only finetune the non-zero backbone weights. Results can
be found in Tab. 9.

Note that for standard PEFT approaches for dense linear
layers of the form Wx + ∆Wx, the resulting transforma-
tion is another linear transformation defined by the matrix
W +∆W . Thus PEFT methods have a strictly smaller ca-
pacity than full fine-tuning W since they restrict the opti-
mization to the subspace defined by the specific choice of
∆W . However, if W is a matrix with a sparsity constraint,
the transformed matrix W + ∆W is generally no longer
sparse. If we jointly train W with a sparsity constraint and
∆W with a PEFT subspace constraint, the resulting model
would have a strictly larger capacity than a model with a
sparsity constraint without the additional ∆W . In our con-
text, during task adaptation, W is a fixed and sparse matrix
whereas ∆W is a learnable matrix with a subspace con-
strained defined by the particular PEFT approach. This sug-
gests that applying PEFT to sparse models can enhance the
model’s capacity beyond what is achievable by simply fine-



tuning the sparse matrices with the same sparsity layout, as
done in the full fine-tuning setting.

For the EF L7 with 90% sparsity, we can see that this
theoretical increase in capacity translates into practice and
results in our PETAH adaptation outperforming all other
adaptation methods. While different ViT adaptations should
have the same theoretical properties, these do not translate
to performance gains since attention and full fine-tuning re-
sult in a similar accuracy. In particular, we note that our
EF L7 with a 90% sparsity ratio and PETAH-2 achieves a
mean accuracy of 84.91% across all tasks at a base model
parameter count of 7.9M and 0.45M parameters per task. In
comparison, a sparse ViT-B with LoRA will only achieve
84.45% mean accuracy at 8.1M base model parameters and
0.44M per-task parameters. Our results highlight that the
combination of PEFT and pruning for the EfficientFormer is
a particularly effective way to achieve small and performant
models that can easily be adapted to new downstream appli-
cations. In particular, our pruned EF L7 with PETAH adap-
tation is faster, smaller, and achieves better performance
than a standard ViT-S with any adaptation strategy, which
would be a common choice for a vision backbone in mobile
settings.

While the combination of sparsity and low-rank adap-
tation has been used for attention approximations [8], up
to our knowledge, this is the first demonstration of the po-
tential benefits of combining sparse backbones with PEFT
task-adaptation techniques, in particular for computer vi-
sion with a hybrid transformer-convolutional backbone.



Table 5. Hyperparameters for the fine-grained classification from Tab. 3

Classification Linear Probing
Full FT

Attention FT

LoRA
PETAH

Consolidator
Batch size 8 × 128
Epochs 200 / 100 (Food101)
Warmup 2
Optimizer AdamW
Scheduler Cosine
Learning Rate {0.005, 0.01, 0.05} {0.001, 0.005, 0.01} {0.001, 0.005, 0.01}
Adapter LR factor - {0.001, 0.1, 1.0} {0.1, 1.0, 5.0, 10.0}
Weight decay {0, 0.0002, 0.002, 0.02}

Table 6. Dataset Overview

CUB Cars Pets Aircraft DTD Food
Train Samples 5994 8144 3680 3334 1880 70700

Validation Samples - - - 3333 1880 5050
Test Samples 5794 8041 3669 3333 1880 25250
Num. classes 200 196 37 102 47 101

Table 7. EF L1 fine-grained classification results omitted from Tab. 3.

Type CUB Cars Pets Aircraft DTD Food Mean #Params

E
F

L
1

Linear-probing 82.74 63.15 90.48 47.03 71.77 79.47 72.44 0
ATTN FT 79.83 81.98 89.87 59.82 70.66 81.52 77.28 1.5M
Full FT 79.83 81.98 89.87 59.82 70.66 85.98 80.17 11.4M
LoRA ATTN 82.10 77.52 90.70 57.25 71.01 81.42 76.66 0.03M
PETAH-1 83.37 85.43 91.22 65.72 71.17 84.38 80.21 0.06M
PETAH-2 83.57 84.99 91.20 66.87 71.10 84.98 80.43 0.09M

Table 8. External regularisation for EF L7 full fine-tuning and PETAH-2. We use RandAugment (RA) and Dropout (DO) with p = 0.1.
Color coding is relative to the baseline without regularization.

Reg. Full FT PETAH-2
RA DO CUB Cars Pets Aircr. DTD Mean CUB Cars Pets Aircr. DTD Mean
✗ ✗ 89.93 90.12 94.34 72.11 76.31 84.56 89.07 91.20 94.19 75.96 77.32 85.55
✓ ✗ 90.18 91.84 94.52 77.59 77.29 86.28 89.23 92.31 94.39 80.50 76.12 86.51
✗ ✓ 90.08 90.44 94.22 72.76 76.60 84.82 88.87 91.16 94.58 76.18 76.92 85.54
✓ ✓ 90.39 91.85 94.33 78.13 77.71 86.48 89.40 92.80 94.52 80.35 76.60 86.73

Table 9. Fine-Grained Classification and PEFT for sparse backbones trained with 90% sparsity.

Type CUB Cars Pets Aircraft DTD Food Mean #Params

E
F

L
7-
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Linear-probing 86.65 71.12 91.88 53.24 72.93 83.92 76.62 0
ATTN FT 86.41 86.25 92.70 65.97 73.69 87.32 82.05 1.57M
Full FT 85.60 88.65 92.57 71.14 73.87 90.56 83.73 7.97M
LoRA ATTN r = 8 85.16 88.14 92.65 68.04 72.34 86.62 82.20 0.26M
PETAH-1 87.48 88.93 93.74 72.50 74.61 89.37 84.44 0.35M
PETAH-2 87.82 89.64 93.89 73.51 75.12 89.47 84.91 0.45M
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Linear-probing 87.73 70.84 92.50 50.11 75.05 87.67 77.32 0
ATTN FT 88.30 89.36 93.61 69.25 76.06 90.44 84.51 2.83M
Full FT 87.30 88.84 93.19 68.13 76.60 89.86 83.99 8.10M
LoRA ATTN r = 8 88.67 88.49 93.77 69.48 76.17 90.12 84.45 0.44M
Consolidator 88.06 87.09 93.69 66.98 76.77 89.51 83.68 0.31M
SSF 88.07 85.43 93.74 65.34 75.25 87.93 82.63 0.21M


