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1. Related Work

6DoF Pose Estimation Algorithms. The majority of data-
driven approaches for object pose estimation revolve around
utilizing either RGB images [18, 27, 34, 35] or RGBD im-
ages [11, 12, 16, 25, 31] as their input source. RGBD
remains mainstream in industrial environments requiring
higher precision. However, due to the high cost of accu-
rate depth sensors, finding more robust solutions compati-
ble with inexpensive and widely used sensors is a problem
we aim to address.

Methods [11, 12, 16, 25, 31] that relied on depth maps
advocated for the modality fusion of depth and RGB data
to enhance inference capabilities. To effectively fuse multi-
modalities, Wang et al. [31] introduced a network archi-
tecture capable of extracting and integrating dense feature
embedding from both RGB and depth sources. Due to
its simplicity, this method achieved high efficiency in pre-
dicting object poses. In more recent works [11–13], per-
formance improvements were achieved through more so-
phisticated network architectures. For instance, He et al.
[12] proposed an enhanced bidirectional fusion network for
key-point matching, resulting in high accuracy on bench-
marks such as YCB-Video [34] and LINEMOD [14]. How-
ever, these methods exhibited reduced efficiency due to the
complex hybrid network structures and processing stages.
Addressing symmetric objects, Mo et al. [25] proposed a
symmetry-invariant pose distance metric to mitigate issues
related to local minima. On the other hand, Jiang et al. [16]
proposed an L1-regularization loss named abc loss, which
enhanced pose estimation accuracy for non-symmetric ob-
jects.

Besides the RGBD approach, studies following the
RGB-only approach often rely on incorporating additional
prior information and inductive biases during the infer-
ence process. These requirements impose additional con-
straints on the application of 3D object tracking on mo-
bile devices. Their inference process can involve utilizing
more viewpoints for similarity matching [19, 23] or geome-
try reconstruction [28, 33], employing rendering techniques
[3, 19, 26] based on precise 3D model or leveraging an addi-
tional database for viewpoint encoding retrieval [3]. During
the training phase, these approaches typically draw upon
more extensive datasets, such as synthetic datasets, to fa-
cilitate effective generalization within open-set scenarios.
However, when confronted with a limited set of data sam-
ples, their performance does not surpass that of closed-set
algorithms in cases where there is a surplus of prior infor-

mation available and depth map loss.

3D Object Tracking Datasets Existing object pose estima-
tion algorithms are predominantly tested on a limited set of
real-world 3D object tracking datasets [4–7, 14, 15, 21, 22,
24, 34], which often employ depth-from-stereo sensors or
time-of-flight (ToF) sensors for data collection. Datasets
like YCB-Video [34], LINEMOD [14], StereoOBJ-1M
[22], and TOD [21] utilize depth-from-stereo sensors, while
TLess [15] and DTTD [7] deploy ToF sensors, specifically
the Microsoft Azure Kinect, to capture meter-scale RGBD
data. However, the use of cameras with depth-from-stereo
sensors may not be an optimal platform for deploying AR
software, because stereo sensors may degrade rapidly at
longer distances [9] and may encounter issues with holes
in the depth map when stereo matching fails. In our pursuit
of addressing the limitations of existing datasets and ensur-
ing a more realistic dataset captured with mobile devices,
we opt to collect RGBD data using the iPhone 14 Pro.

iPhone-based Datasets for 3D Applications. Several
datasets utilize the iPhone as their data collection device
for 3D applications, such as ARKitScenes [1], MobileBrick
[20], ARKitTrack [36], and RGBD Dataset [10]. These
datasets were constructed to target applications from 3D
indoor scene reconstruction, 3D ground-truth annotation,
depth-map pairing from different sensors, to RGBD track-
ing in both static and dynamic scenes. However, most of
these datasets did not specifically target the task of 6DoF
object pose estimation. Our dataset provides a distinct fo-
cus on this task, offering per-pixel segmentation and pose
labels. This enables researchers to delve into the 3D lo-
calization tasks of objects with a dataset specifically de-
signed for this purpose. The most relevant work is from
OnePose [28], which is an RGBD 3D dataset collected by
iPhone. However, their dataset did not provide 3D models
for close-set settings, and they utilized automatic localiza-
tion provided by ARKit for pose annotation, which involved
non-trivial error for high-accuracy 6DoF pose estimation.
On the other hand, we achieve higher localization accuracy
with the OptiTrack professional motion capture system to
track the iPhone camera’s real-time positions as it moves in
3D.



Figure 1. Sample visualizations of our dataset. First row: Annotations for 3D bounding boxes. Second row: Corresponding semantic
segmentation labels. Third row: Zoomed-in LiDAR depth visualizations.

2. More Dataset Description

2.1. Data Acquisition

Apple’s ARKit framework1 enables us to capture RGB im-
ages from the iPhone camera and scene depth informa-
tion from the LiDAR scanner synchronously. We lever-
age ARKit APIs to retrieve 1920 × 1440 RGB images and
256 × 192 depth maps at a capturing rate of 30 frames per
second. Despite the resolution difference, both captured
RGB images and depth maps match up in the aspect ra-
tio and describe the same scene. Alongside each captured
frame, DTTD-Mobile stores the camera intrinsic matrix and
lens distortion coefficients, and also stores a 2D confidence
map describing how the iPhone depth sensor is confident
about the captured depth at the pixel level. In practice, we
disabled the auto-focus functionality of the iPhone camera
during data collection to avoid drastic changes in the cam-
era’s intrinsics between frames, and we resized the depth
map to the RGB resolution using nearest neighbor interpo-
lation to avoid depth map artifacts.

To track the iPhone’s 6DoF movement, we did not use
the iPhone’s own world tracking SDK. Instead, we follow
the same procedure as in [7] and use the professional Opti-
Track motion capture system for higher accuracy. For label
generation, we also use the open-sourced data annotation
pipeline provided by [7] to annotate and refine ground-truth
poses for objects in the scenes along with per-pixel seman-
tic segmentation. Some visualizations of data samples are
illustrated in Fig. 1. Notice that the scenes cover vari-
ous real-world occlusion and lighting conditions with high-
quality annotations. Following previous dataset protocols
[7, 34], we also provide synthetic data for scene augmenta-
tions used for training.

1https://developer.apple.com/documentation/arkit/

The dataset also provides 3D models of the 18 objects
as illustrated in the main paper. These models are re-
constructed using the iOS Polycam app via access to the
iPhone camera and LiDAR sensors. To enhance the models,
Blender 2 is employed to repair surface holes and correct in-
accurately scanned texture pixels.

2.2. Train/Test Split
DTTD-Mobile offers a suggested train/test partition as fol-
lows. The training set contains 8622 keyframes extracted
from 88 video sequences, while the testing set contains
1239 keyframes from 12 video sequences. To ensure a
representative distribution of scenes with occluded objects
and varying lighting conditions, we randomly allocate them
across both the training and testing sets. Furthermore,
for training purposes of scene augmentations, we provide
20,000 synthetic images by randomly placing objects in
scenes using the data synthesizer provided in [7].

3. More Implementation Details
3.1. Details on RGBD Feature Fusion
Attention Mechanism. For both modality fusion and
point-wise fusion stage, the scaled dot-product attention is
utilized in the self-attention layers:

Attention(Q,K,V)i =
∑
j

exp(qT
i kj/

√
dhead)∑

k exp(q
T
i kk/

√
dhead)

vj ,

(1)
where query, key, value, and similarity score are denoted as
q, k, v, and s. The distinction between two fusion stages
lies in the token preparation prior to the linear projection
layer. It results in varying information contained within the
query, key, and value.

2https://www.blender.org/
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Figure 2. Examples of attention map output visualize of both modality fusion stage (the larger maps in the first row) and point-wise fusion
stage (the smaller ones in the second row) on two objects (itogen green tea and black marker). Due to the different ways we concentrate
features in the two fusion stages, the token sequence length in modality fusion is twice that in the point-wise fusion process. For the
attention maps produced in the final layer of modality fusion and point-wise fusion, they are of sizes 2000 × 2000 and 1000 × 1000,
respectively.

The key idea in the first fusion stage is to perform lo-
cal per-point fusion in a cross-modality manner so that we
can make predictions based on each fused feature. Each
key or query carries only one type of modal information be-
fore fusion, allowing different modalities to equally interact
with each other through dot-product operations. It exerts a
stronger influence when the RGB and geometric represen-
tations produce higher similarity.

In the second stage, where we integrate two origi-
nal single-modal features with the first-stage feature into
each point, we calculate similarities solely among differ-
ent points. The key idea is to enforce attention layers to
further capture potential relationships among multiple local
features. A skip connection is employed in a concentrating
manner between two fusion outputs so that we can make
predictions based on per-point features generated in both
the first and second stages.
Modality Fusion. The objective of this module is to com-
bine geometric embedding g and RGB embedding c pro-
duced by single-modal encoders in a cross-modal fash-
ion. Drawing inspiration from ViLP [17], both types of
embedding are linearly transformed into a token sequence
(∈ RN×demb ). Before entering the modality fusion module
E1, these features are combined along the sequence length
direction, i.e., all feature embedding is concentrated into a
single combined sequence, where the dimension remains
demb, and the sequence length becomes twice the original
length.

f1 = E1 [c⊕ g] ∈ Rdf1
×2N (2)

where the operation symbol ”⊕” denotes concentrating
along the row direction. It is then reshaped into the se-
quence f ′

1 with the length of N and dimension of 2df1 in or-
der to adapt the point-wise transformer encoder in the next
fusion stage. This step enables the model’s attention mech-
anism to effectively perform cross-modal fusion tasks.
Point-Wise Fusion. The goal of this stage is to enhance the
integration of information among various points. The pri-
mary advantage of our method over the previous work [12]

is that our model can calculate similarity scores not only
with the nearest point but also with all other points, allow-
ing for more comprehensive interactions. In order to en-
able the point-wise fusion to effectively capture the similar-
ities between different points, we merge the original RGB
token sequence c and the geometric token sequence g to-
gether with the output embedding sequence m′ from the
modality fusion module along the feature dimension direc-
tion. The combined sequence input

[
cT ⊕ gT ⊕ (f ′

1)
T
]T ∈

R(2demb+2df1
)×N is then fed into the point-wise trans-

former encoder E2 to acquire the final fusion:

f2 = E2

[
cT ⊕ gT ⊕ (f ′

1)
T
]T ∈ Rdf2

×N (3)

Attention Map Visualization. To visualize what our fu-
sion module learns during the training process, we draw
on previous studies [8, 29] and represent our attention
map as ai,j described in section 3.1. Taking two objects
(itoen green tea and black marker) as examples, Fig. 2
displays the attention maps produced by different attention
heads in the two fusion stages. We showcase the attention
maps generated by the modality fusion and point-wise fu-
sion at their respective final layers. The modality fusion
part reveals distinct quadrant-like patterns, reflecting differ-
ences in how the two modalities fuse. The lower-left and
upper-right quadrants offer insights into the degree of RGB
and geometric feature fusion. The point-wise fusion part
exhibits a striped pattern and shows that it attends to the
significance of specific tokens during training.

3.2. Hyperparameters
Details on Fusion Stages’ Hyperparameters. We ex-
tracted 1000 of pixels from the decoded RGB representation
corresponding to the same number of points in the LiDAR
point set. Both extracted RGB and geometric features are
linear projected to 256-D before fused together. In the fi-
nal experiment results, we utilized an 8-layer transformer
encoder with 4 attention heads for the modality fusion stage



Table 1. Comparison with diverse 6DoF pose estimation baselines on YCB video dataset. We evaluate the results as the prior works
[31] using ADD-S AUC and ADD-S (2cm) on all 21 objects, higher is better. Note that the left-most column indicates the per-object
depth-ADD error. Objects with names in bold are symmetric.

depth-ADD DenseFusion [31] MegaPose-RGBD [19] ES6D [25] BundleSDF [32] DTTDNet (Ours)

Object Average ADD-S AUC ADD-S (2cm) ADD-S AUC ADD-S (2cm) ADD-S AUC ADD-S (2cm) ADD-S AUC ADD-S (2cm) ADD-S AUC ADD-S (2cm)

master chef can 0.005 95.20 100.00 79.11 69.88 82.47 73.56 97.05 100.00 96.32 100.00
cracker box 0.005 92.50 99.30 74.98 80.65 81.09 84.68 90.69 87.67 92.92 98.04
sugar box 0.009 95.10 100.00 81.42 90.95 95.97 97.80 97.79 100.00 96.76 100.00
tomato can 0.011 93.70 96.90 86.11 94.79 89.02 92.71 68.27 70.00 96.69 99.17
mustard bottle 0.005 95.90 100.00 87.41 99.72 93.13 87.11 98.21 100.00 97.39 100.00
tuna can 0.013 94.90 100.00 91.03 100.00 74.86 74.22 91.11 100.00 95.78 100.00
pudding box 0.005 94.70 100.00 89.65 100.00 90.13 98.60 97.67 100.00 93.24 95.33
gelatin box 0.011 95.80 100.00 87.17 99.07 97.39 100.00 98.46 100.00 97.97 100.00
potted meat 0.008 90.10 93.10 77.88 80.81 78.56 75.46 62.00 58.22 93.56 92.04
banana 0.007 91.50 93.90 76.18 71.77 92.83 84.70 97.72 100.00 94.52 100.00
pitcher base 0.007 94.60 100.00 91.26 100.00 93.67 90.18 96.53 100.00 95.76 100.00
bleach cleanser 0.007 94.30 99.80 82.97 74.05 88.12 87.76 69.67 71.72 93.30 99.61
bowl 0.021 86.60 69.50 83.80 59.61 2.68 0.00 97.57 100.00 84.33 51.23
mug 0.010 95.50 100.00 86.63 97.64 88.58 89.15 97.09 100.00 97.00 99.53
power drill 0.010 92.40 97.10 88.86 97.73 85.43 78.62 97.17 99.81 95.57 99.81
wood block 0.007 85.50 93.40 35.55 0.41 29.56 1.24 19.57 0.00 87.63 90.50
scissors 0.010 96.40 100.00 26.52 7.18 33.38 27.07 93.25 97.24 71.68 20.99
large marker 0.011 94.70 99.20 83.02 67.13 90.08 87.96 95.08 93.83 95.66 97.22
large clamp 0.011 71.60 78.50 85.93 90.03 43.74 17.84 96.77 99.16 90.99 99.44
extra large clamp 0.012 69.00 69.50 76.49 88.32 66.77 69.35 95.15 100.00 89.70 93.11
foam brick 0.007 92.40 100.00 84.29 92.36 26.11 27.08 0.00 0.00 95.63 100.00

Average 0.009 91.20 95.30 82.64 84.81 78.14 75.35 86.31 87.64 94.19 96.14

and a 4-layer transformer encoder with 8 attention heads for
the point-wise fusion stage.
Training Strategies. For our DTTDNet, learning rate
warm-up schedule is used to ensure that our transformer-
based model can overcome local minima in early stage and
be more effectively trained. By empirical evaluation, in the
first epoch, the learning rate lr linearly increases from 0
to 1e−5. In the subsequent epochs, it is decreased using a
cosine scheduler to the end learning rate min lr = 1e−6.
Additionally, following the approach of DenseFusion [31],
we also decay our learning rate by a certain ratio when the
average error is below a certain threshold during the train-
ing process. Detailed code and parameters will be publicly
available in our code repository. Moreover, we set the im-
portance factor λ of Chamfer distance loss to 0.3 and the
initial balancing weight w to 0.015 by empirical testing.

4. More Experimental Details

4.1. Baseline Implementation Details

For all the baseline methods [19, 25, 31, 32] that we
adopted, we did not integrate any additional iterative refine-
ment processes (e.g., ICP [2]) for fair comparison.
ES6D [25]. We preprocessed the training datasets including
both DTTD-Mobile and YCB video according to the origi-
nal paper and official codebase of ES6D [25], including re-
moving some high-noise data, normalizing 3D translation,
averaging the xyz map, and filtering out outliers in the point
cloud. For the test set, to ensure fair comparison with other
baselines, we did not adopt certain noise reduction methods
that require prior knowledge based on ground truth data, nor
did we exclude some high-noise data samples. We ensured

that all test samples were retained and had errors calculated
as those in other baselines.
BundleSDF [32]. The object-centric camera pose coordi-
nates outputted by BundleSDF [32] are based on its own
embedded geometric reconstruction. In order to compute
metrics in the same coordinate system and with the same
CAD models as other baselines, we aligned the camera tra-
jectory computed for each scene-object combination with
the ground truth camera pose through trajectory-wise align-
ment based on the Umeyama algorithm [30].

4.2. More Results on YCB video Dataset

Due to the lower depth noise in the YCB video dataset
(YCB’s average depth-ADD is 0.009, while DTTD-
Mobile’s average depth-ADD is 0.239), we adopted a sim-
plified DTTDNet model structure, omitting the GFF mod-
ule, to accelerate training convergence. Additionally, the
reference point set used for computing Chamfer distance
loss was directly extracted from the depth map. Further-
more, regarding hyper-parameters, we chose 0 layers for
modality fusion and 6 self-attention layers for point-wise
fusion.

When examining the performance of each baseline on
the YCB video dataset, as shown in ??. DTTDNet achieves
the highest average performance, with an ADD-S AUC of
94.19 and an ADD-S (2cm) of 96.14. DenseFusion [31]
is the second best, with an ADD-S AUC of 91.20 and an
ADD-S (2cm) of 95.30. Although BundleSDF [32] shows
strong performance across many object classes, it struggles
with pose estimation for some objects, primarily due to its
inability to reconstruct 3D models in the presence of occlu-
sions. Its ADD-S AUC is 86.31, and its ADD-S (2cm) is



87.64. In contrast, MegaPose-RGBD [19] and ES6D [25]
lag behind in performance, particularly in the number of
object classes in which they perform the best, with ADD-S
AUC scores of 82.64 and 78.14, and ADD-S (2cm) scores
of 84.81 and 75.35, respectively.
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