
FLAR-SVD: Fast and Latency-Aware Singular Value Decomposition for

Model Compression

Supplementary Material

6. Downstream Tasks

We investigate the applicability of our compressed models

on downstream tasks. Specifically, we use our compressed

version of Swin-L [16] and ConvNeXt-B [17] (both without

any finetuning after compressing) as backbones for object

detection models. We perform instance segmentation using

Mask R-CNN [11]. The experiments are conducted on the

COCO dataset [15], a standard benchmark for evaluating

detection and segmentation models. All models are trained

using a 1x schedule, which consists of 12 epochs, following

the training protocol outlined in the official mmdetection

Swin configs. The training is using the mmdetection [4]

frameworks and configs. We further evaluate our models on

segmentation tasks on the ADE20K [30] dataset using the

mmsegmentation [5] toolbox. We put a upernet [26] head to

our models and follow the schedule outlined for Swin and

ConvNeXt in mmsegmentation. The results are presented

in Table 7 and Table 8. As can be seen, in both tasks our

compressed model outperforms the non-compressed base-

line in terms of throughput. Moreover, we also have lower

latency than the SVD-LLM compressed backbone. How-

ever, in mIoU and mAP our models cannot catch up with the

non-compressed baseline. The missing finetuning can likely

be identified as the culprit for that gap. However, compared

to SVD-LLM our approach still results in better segmenta-

tion performance, despite the strong numbers reported by

SVD-LLM compressed Swin on ImageNet classification.

Overall, while there are slight predictive performance draw-

backs due to missing finetuning, our strong throughput per-

formance warrant further investigation.

Table 7. Mask R-CNN and Retina object detection mAP and

throughput on COCO dataset at 512x512 resolution with torch-

compile in reduce-overhead mode on Nvidia V100.

Mask R-CNN Object Detection on COCO

Model Method mAP b mAP b
50

mAP b
75

mAPm mAPm
50

mAPm
75

(Img

s
) ↑

Swin-Large
Base [16] 47.7 69.5 52.7 43.1 66.8 46.6 16.4

ours 46.1 68.0 50.6 42.1 65.3 45.4 21.5

ConvNext
Base [17] - - - - - - 30.1

ours - - - - - - 31.7

7. Latency for Compression

For the latency-awareness module, we trained a random for-

est regressor to work as a latency predictor based on the

input to the layer, the number of output features, and the se-

lected rank. To train it, we used 1500 samples generated

Table 8. Semantic segmentation MIoU and throughput on

ADE20K dataset at 512x512 resolution with torch-compile in

reduce-overhead mode on Nvidia V100.

Semantic Segmentation on ADE20K

Model Method MIoU Throughput (img/s) ↑

Swin-Large

Base [16] 51.5 16.8

SVD-LLM [24] 40.1 20.4

ours 49.0 21.0

ConvNext
Base [17] 50.7 26.5

ours 47.9 31.3

with a randomized pipeline. The constraints to generate

each layer for a subset of individual samples is as follows:

• Input-size:

– batch size by a power of 2

– randomly choose between [7, 8, 12, 14, 16, 30, 32]

– randomly choose between [96, 128] and multiply by a

power of 2

• Output features: Input-size[-1] by (1, 3, 4)

Next, we obtain the latency measurements for layer

uncompressed (uncomp) and compressed to rank 1

(comprank1) as a reference. Then, we create a dummy low-

rank sequential module at random rank k (compk) and ob-

tain the following ratio Y = compk−comprank1

uncomp−comprank1

.

With this, we fit the random forest regressor (100 esti-

mators) on 1200 samples with the first, giving us a R2 score

of 0.95.

