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6. Downstream Tasks

We investigate the applicability of our compressed models

on downstream tasks. Specifically, we use our compressed

version of Swin-L [16] and ConvNeXt-B [17] (both without

any finetuning after compressing) as backbones for object

detection models. We perform instance segmentation using

Mask R-CNN [11]. The experiments are conducted on the

COCO dataset [15], a standard benchmark for evaluating

detection and segmentation models. All models are trained

using a 1x schedule, which consists of 12 epochs, following

the training protocol outlined in the official mmdetection

Swin configs. The training is using the mmdetection [4]

frameworks and configs. We further evaluate our models on

segmentation tasks on the ADE20K [30] dataset using the

mmsegmentation [5] toolbox. We put a upernet [26] head to

our models and follow the schedule outlined for Swin and

ConvNeXt in mmsegmentation. The results are presented

in Table 7 and Table 8. As can be seen, in both tasks our

compressed model outperforms the non-compressed base-

line in terms of throughput. Moreover, we also have lower

latency than the SVD-LLM compressed backbone. How-

ever, in mIoU and mAP our models cannot catch up with the

non-compressed baseline. The missing finetuning can likely

be identified as the culprit for that gap. However, compared

to SVD-LLM our approach still results in better segmenta-

tion performance, despite the strong numbers reported by

SVD-LLM compressed Swin on ImageNet classification.

Overall, while there are slight predictive performance draw-

backs due to missing finetuning, our strong throughput per-

formance warrant further investigation.

Table 7. Mask R-CNN and Retina object detection mAP and

throughput on COCO dataset at 512x512 resolution with torch-

compile in reduce-overhead mode on Nvidia V100.

Mask R-CNN Object Detection on COCO

Model Method mAP b mAP b
50

mAP b
75

mAPm mAPm
50

mAPm
75

( Img

s
) ↑

Swin-Large
Base [16] 47.7 69.5 52.7 43.1 66.8 46.6 16.4

ours 46.1 68.0 50.6 42.1 65.3 45.4 21.5

ConvNext
Base [17] - - - - - - 30.1

ours - - - - - - 31.7

7. Latency for Compression

For the latency-awareness module, we trained a random for-

est regressor to work as a latency predictor based on the

input to the layer, the number of output features, and the se-

lected rank. To train it, we used 1500 samples generated

Table 8. Semantic segmentation MIoU and throughput on

ADE20K dataset at 512x512 resolution with torch-compile in

reduce-overhead mode on Nvidia V100.

Semantic Segmentation on ADE20K

Model Method MIoU Throughput (img/s) ↑

Swin-Large

Base [16] 51.5 16.8

SVD-LLM [24] 40.1 20.4

ours 49.0 21.0

ConvNext
Base [17] 50.7 26.5

ours 47.9 31.3

with a randomized pipeline. The constraints to generate

each layer for a subset of individual samples is as follows:

• Input-size:

– batch size by a power of 2

– randomly choose between [7, 8, 12, 14, 16, 30, 32]

– randomly choose between [96, 128] and multiply by a

power of 2

• Output features: Input-size[-1] by (1, 3, 4)

Next, we obtain the latency measurements for layer

uncompressed (uncomp) and compressed to rank 1

(comprank1) as a reference. Then, we create a dummy low-

rank sequential module at random rank k (compk) and ob-

tain the following ratio Y = compk−comprank1

uncomp−comprank1

.

With this, we fit the random forest regressor (100 esti-

mators) on 1200 samples with the first, giving us a R2 score

of 0.95.


