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Abstract

While large vision-language models (LVLMs) have made
significant progress in multimodal reasoning, they continue
to struggle with complex tasks requiring multistep reason-
ing involving different visual cues across reasoning stages.
Specifically, LVLMs have difficulty focusing on critical im-
age regions, limiting their ability to solve challenging mul-
timodal algorithmic problems. To address this limitation,
we propose Implicit Chain-of-Vision (ICOV), a fine-tuning
framework that empowers LVLMs to autonomously gener-
ate implicit rationales directly from visual inputs, improving
reasoning capabilities without external supervision. Specif-
ically, ICOV utilizes a step-by-step, decoupled training-
inference framework, allowing the models to effectively in-
tegrate structured logical reasoning with targeted attention
on essential visual regions during question answering. Ex-
perimental results demonstrate that ICOV significantly im-
proves the performance of LVLMs on complex multimodal
tasks, outperforming both standard fine-tuning methods and
existing chain-of-vision (CoV)-based decoding approaches.

1. Introduction

Multimodal, and more specifically vision-language reason-
ing [32, 39, 52, 59] has become a critical frontier in artificial
intelligence (AI), where models are expected to understand
comprehensive information from visual and textual in-
puts to reason and achieve high-level problem-solving abil-
ity and handle complex visual question answering (VQA)
tasks. With the rapid development of large vision language
models (LVLMs) [5, 17, 18, 20, 37, 50, 54, 58, 61], mul-
timodal reasoning has advanced significantly, with models
now able to handle increasingly complex queries by inte-
grating visual and language understanding [4, 10, 19, 22,
27, 31, 48, 51].
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However, most existing LVLMs unfortunately only per-
form well on straightforward comprehension of image con-
tent, falling short in more complex scenarios that require
deeper or multistep reasoning [15, 21]. Specifically, a re-
cent benchmark study [15], which focuses on evaluating
the abstraction, deduction, and generalization capabilities
of models in solving complex vision-language puzzles, ar-
gues that the current LVLMs are performing no better than
second graders when the questions require more demanding
reasoning skills.

Meanwhile, research community has observed much
more success in large language model (LLMs) reason-
ing [24, 38, 56], where the model conducts reasoning
solely based on textual inputs. Progress in LLM reason-
ing has shown impressive capabilities in handling tasks
across diverse domains including mathematical problem-
solving [1, 53], multi-step reasoning [11, 14, 44], and com-
mon sense reasoning [60]. Moreover, such performance
can be further improved with either post-training finetun-
ing [11, 53] or train-free prompting techniques [3, 46, 49].

This performance gap highlights the unique challenges
of vision-language reasoning. One hypothesis [23] sug-
gests that, while textual reasoning in LLMs benefits from
structured linguistic patterns and explicit logical cues, vi-
sual information in LVLMs often lacks such inherent struc-
ture and requires additional contextualization to integrate
with language-based reasoning. This hypothesis is partially
shown empirically, where the multimodal chain-of-thought
(MCoT) [59] improves vision-language reasoning using a
two-stage framework that separates rationale generation and
answer inference. By doing so, LVLMs can perform better
on more complex, reasoning-intense questions as they can
combine better generated rationales based on visual infor-
mation before providing the final answer.

Despite the initial success of the approaches [32, 39,
57, 59], multimodal reasoning capabilities still remains ex-
tremely underexplored, especially compared to text-only
LLM reasoning. Applying LLM reasoning techniques
to LVLMs remain challenging, with the difficulty arises
largely from the inherent complexity and ambiguity in inter-
preting visual inputs, which lack the structured cues avail-
able in textual reasoning. Additionally, prompt engineer-
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ing techniques [59] often fail to consistently elevate LVLM
performance in scenarios requiring nuanced or multistep vi-
sual interpretation, particularly when models struggle with
instruction following or reasoning [42].

To address these limitations, we propose Implicit
Chain-of-Vision (ICOV). ICOV is designed to internal-
ize reasoning capabilities within LVLMs without relying
solely on external LLM support. Specifically, ICOV uti-
lizes a separated train-inference framework, where VLMs
are fine-tuned to generate intermediate rationales directly
from visual content before deriving final answers. This ap-
proach enables VLMs to autonomously build logical con-
nections within visual data, enhancing their ability to tackle
reasoning-heavy tasks. Experimental results show that, af-
ter training with ICOV, the model internalizes the reason-
ing methods from the fine-tuning dataset and effectively im-
proves QA accuracy. Our method not only advances cur-
rent LVLM capabilities but also demonstrates potential for
broader applications in scenarios demanding complex mul-
timodal reasoning.

2. Related Work

2.1. Vision-Language Reasoning

Existing LVLMs can generally maintain accuracy on sim-
ple image-based questions by accurately understanding im-
age content. However, their performance diminishes when
facing more challenging algorithmic problems based on im-
ages [15, 21]. To address these complex problems, re-
cent studies have explored methods that integrates Chain-
of-Thought (CoT) [46] into multimodal reasoning, with [34,
35] showing significant improvements in enhancing reason-
ing and response accuracy through logical chains.

However, existing studies focus primarily on CoT fine-
tuning for LVLMs to enhance their text-based reasoning
abilities. In this paper, we introduce a novel algorithm de-
sign called the Implicit Chain of Vision (ICOV), which uti-
lizes multimodal reasoning techniques and integrates pro-
cedural fine-tuning with CoT decomposition. By progres-
sively reducing the number of subproblems in fine-tuning
at each training stage, we effectively enhance the image
understanding, multimodal reasoning, and problem-solving
capabilities of off-the-shelf LVLMs.

2.2. Multimodal CoT

Existing research on multimodal CoT with visual data [12,
40, 59] has explored various methodologies to enhance the
reasoning capabilities of LVLMs. These methodologies can
be broadly categorized into three types of methods: en-
hancing answer selection, integrating external reasoning re-
sources, and internalizing logical reasoning.

Enhancing answer selection. Initially, studies often em-
ploy multiple VLMs to generate answers which are then
selected through mechanisms like voting by large lan-
guage models (LLMs) [4, 43]. Although this approach im-
proved answer accuracy, it does not significantly enhance
the VLMs’ intrinsic reasoning capabilities.

Integrating external reasoning resources. Other studies
have focused on incorporating external resources such as
knowledge graphs or processing multiple images simulta-
neously to improve VLM’s ability to connect images with
questions [2, 9, 12, 13, 33, 40, 59]. These methods benefit
comprehension and contextual understanding, yet they of-
fer limited enhancements of the CoT reasoning specifically
tailored for complex image-based problem-solving tasks.

Internalizing logical reasoning. More recent studies
have utilized VLM-LLM integrations where visual and
question information processed by VLMs is passed to
LLMs. Then LLMs generate the rationale or logical chain
for the final answer [6, 10, 28, 36, 41, 45, 47, 55]. This
strategy utilizes LLM-generated CoT reasoning but often
relies on external LLMs during inference, thus limiting end-
to-end processing and under-utilizing LVLM’s potential for
independent reasoning. To address these limitations, our
work introduces an implicit CoT (ICOV) training strategy
that internalizes LLM-assisted reasoning capabilities within
the VLM’s structure, substantially improving response ac-
curacy. This strategy builds upon prior research in reason-
ing fine-tuning, which has explored the combination of mul-
timodal reasoning and reasoning fine-tuning strategy.

3. Methodology
Figure 1 illustrates the overall pipeline of our proposed
ICOV, which comprises four core components: 1) Tree-
based Question Decomposition Synthesis, 2) Chain-of-
Vision Image Decomposition, 3) localized visual attention,
and 4) Stepwise Fine-tuning for Implicit Reasoning. Specif-
ically, the key insight of our approach is to leverage the
fact that LVLMs perform better on VQA queries where
the associated images contain simpler visual cues and less
noise [12]. Therefore, ICOV decomposes complex multi-
modal questions into manageable sub-questions, each asso-
ciated with a distinct local image region, effectively build-
ing up to solve the original complex question.

3.1. Tree-based Question Decomposition Synthesis

Chain-of-Thought (CoT) methods have recently shown no-
table success in enhancing reasoning capabilities by de-
composing complex questions into simpler sub-questions,
both in textual reasoning [46] and visual question answer-
ing (VQA) [59]. However, these methods typically excel at
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Figure 1. Overall architecture of the proposed pipeline. The pipeline begins with explicit chain-of-thought (CoT) prompting using GPT-4o
to generate a sequence of sub-questions and corresponding answers (SQA) for each puzzle. For each SQA pair, CLIP-based similarity
scores are computed to identify and rank the most relevant image regions, producing a structured sub-visual question-answer (SVQA)
dataset. To ensure label quality, only SVQA branches leading to a correct final puzzle answer are retained. This curated dataset, comprising
original puzzle questions, answers, and visual grounding from critical sub-images, is used to fine-tune a LVLM. During fine-tuning, we
adjust the LVLM’s cross-attention to focus on the identified sub-image regions, thereby enhancing its ability to reason over complex visual
inputs.

general VQA tasks but struggle with decomposing intricate,
multi-step reasoning questions (e.g., SMART-101 puzzle).
Moreover, due to generalizability requirements, we assume
no prior access to ground-truth solution paths, making exist-
ing CoT methods either inapplicable or inefficient, as valid
solution paths are typically very sparse [11]. Additionally,
current decomposition approaches rarely account for the in-
herently multimodal nature of visual reasoning, usually re-
lying solely on textual decomposition.

To address this issue, we introduce an efficient tree-based
multimodal question decomposition synthesis pipeline, as
illustrated in Figure 2. To best exploit the fact that cur-
rent MLLMs excel at reasoning over localized visual cues
with minimal complexity (e.g., counting objects, comparing
lengths), we first prompt a powerful MLLM (e.g., GPT-4o)
to decompose the question into a sequence of sub-questions,
each targeting a specific region of the image.

After generating the sub-questions, we employ a tree-
based exploration method to derive ground-truth sub-
answers. Specifically, (1) at each tree layer, we adopt mul-
tiple MLLMs to provide candidate answers for the current
sub-question. Then, we use GPT-4o as a judge to select the
most plausible solution paths up to that point [5]. Then, (2)
we proceed to the next sub-question and extend each vali-
dated path by generating new sub-answer candidates, again
using GPT-4o for selection. This stepwise expansion en-
ables us to build a diverse set of accurate sub-solution paths.

Finally, (3) upon reaching the leaf nodes (i.e the final sub-
question), we retain only those paths whose final answers
are verified to be correct. Notably, this synthesis pipeline
enables the efficient collection of diverse yet accurate rea-
soning paths by leveraging both procedural and outcome su-
pervision [11].

3.2. Chain-of-Vision Decomposition

While existing multimodal reasoning approaches mostly fo-
cus on textual decomposition, as discussed in Section 2,
they often overlook the need for varying visual contexts at
different reasoning steps. These methods typically provide
the entire image for each sub-question, which can intro-
duce unnecessary visual noise, particularly when the sub-
question is relevant only to a specific region of the image.

To address this limitation, we propose Chain-of-Vision
(CoV) Decomposition, which jointly decomposes both the
textual question and the image, aligning each sub-question
with a localized visual region to enable more focused and
precise reasoning.

Specifically, we divide the original image into 13 sub-
images designed to capture both granular and overlapping
visual contexts. This includes a 3×3 grid layout that gener-
ates nine equal-sized segments, along with four additional
sub-images centered at the intersections of the grid lines.
Notably, all sub-images are maintained at the same reso-
lution, ensuring consistency in patch tokenization and pre-
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Figure 2. Multimodal decomposition framework. Given an in-
put puzzle comprising both an image and a textual question, our
method first performs textual decomposition by prompting an
LLM to generate B root sub-question-answer (SQA) pairs. Each
branch is recursively expanded using follow-up prompts until ei-
ther the final answer is reached or the branch depth reaches D.
Only branches that produce the correct final answer are retained
for dataset inclusion. In parallel, we perform image decomposition
by segmenting the original puzzle image into sub-images aligned
with each SQA. These sub-images serve to visually ground the
reasoning steps, enabling fine-grained multimodal alignment be-
tween sub-questions and relevant image regions.

serving spatial coherence. Specifically, this decomposition
strategy allows the model to attend to distinct yet potentially
overlapping regions of the image, which is particularly valu-
able for complex reasoning tasks that require interpreting
multiple visual relationships in a structured sequence.

3.3. Localized Visual Attention

To incorporate this decomposition during fine-tuning, we
pair each sub-question with the most relevant sub-image.
The vision encoder processes these sub-images into patch
tokens, which are then integrated into the model via cross-
modal attention. We modify the cross-attention mechanism
such that each text token selectively attends to the visual
tokens of the associated sub-image, using a constrained at-
tention mask to reinforce localized alignment.

To further enforce this targeted focus, we introduce an
attention-guided loss function:

L = −
N∑
i=1

αi log(pi) + λ|A−A∗|22 (1)

where N denotes the total number of image regions consid-
ered, αi represents the attention weight assigned to the i-th
region, and pi is the predicted relevance probability for that
region. The matrix A captures the model’s actual attention
distribution, while A∗ denotes the ideal attention target de-
rived from decomposition alignment. The term λ controls
the balance between prediction accuracy and attention reg-
ularization.

By aligning sub-questions with localized image regions
and guiding attention accordingly, our Chain-of-Vision de-
composition significantly improves the model’s ability to
perform multi-step visual reasoning. This approach reduces
ambiguity, enhances interpretability, and ensures more
stable and accurate performance across complex vision-
language tasks.

3.4. Stepwise Fine-Tuning for Implicit Reasoning

To enable LVLMs to perform implicit Chain-of-Vision
(CoV) reasoning, we adopt a stepwise fine-tuning approach
inspired by Stepwise Internalization [16]. This method in-
crementally transitions the model from relying on explicit
supervision toward fully implicit multimodal reasoning. We
begin with a base LVLM trained using the complete set
of decomposed sub-question, sub-answer, and sub-image
triplets, representing fully explicit CoV supervision. In each
subsequent fine-tuning stage, we remove one sub-question-
answer-image tuple from the beginning of the sequence for
each puzzle, thereby reducing the model’s exposure to in-
termediate reasoning steps.

Formally, at stage t, the model is fine-tuned using exam-
ples in which the first t reasoning steps are omitted. For
our experiments, we set the removal step size S = 1, as it
yields better empirical performance than larger step sizes.
This process continues until only the original puzzle (com-
prising the original question, original image, and final an-
swer) remains, effectively resulting in a model that relies
solely on the implicit reasoning it has internalized during
prior stages.

During inference, we evaluate the final-stage model
without any intermediate reasoning inputs. The model is
presented with original question and image and is expected
to generate the correct answer based on its learned internal
reasoning capabilities. This setup ensures zero reliance on
external reasoning prompts, enabling efficient and scalable
deployment in real-world multimodal reasoning tasks.
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Figure 3. Stepwise Internalization for ICOV. The training pro-
cess of ICOV’s stepwise internalization method proceeds through
a sequence of fine-tuning stages. At Stage 0, the model is trained
with the full sequence of visual reasoning steps—represented as
tuples < SQi, SAi, SIi > denoting sub-question, sub-answer, and
sub-image, corresponding to explicit Chain-of-Vision (CoV) su-
pervision. At each subsequent stage, one CoV token (from the
beginning of the sequence) is removed, and the model is further
fine-tuned to predict the final puzzle output using progressively
less intermediate supervision. By the final stage, all intermediate
CoV tokens have been removed, and the model is trained to solve
the puzzle using only the original question-answer pair and image,
representing implicit CoV reasoning.

4. Experiment
4.1. Experimental Setup

Fine-tuning dataset. We primarily use the SMART-101
dataset [15], which contains 101 unique puzzles requiring

Puzzle ID
Sub-Question Level Branch Level

QF QC Qacc (%) BF BC Bacc (%)

18 1,683 542 32.20 3,131 683 21.81
69 1,996 838 41.98 5,541 1,114 20.10
71 1,223 556 45.46 1,660 634 38.19
77 1,868 876 46.90 3,712 1,171 31.55
94 2,000 1,955 97.75 5,953 4,368 73.37
99 1,536 456 26.69 2,527 520 20.58

Table 1. Accuracy of GPT-4o Decompositions Across Selected
SMART-101 Puzzles. For each puzzle, QF and BF denote the to-
tal number of sub-questions and branches, respectively, for which
GPT-4o generated a final answer. QC and BC denote the number
of correct answers. Qacc and Bacc represent the corresponding ac-
curacy rates at the sub-question and branch levels.

skills such as ordering, algebra, and spatial reasoning. Each
puzzle includes 2,000 sub-puzzles. To enable ICOV rea-
soning in MLLMs, we construct a decomposition dataset
by combining text-based and vision-based reasoning opti-
mization strategies, as detailed in Section 3.

For each puzzle, we decompose it into B = 3 main
branches or subroot puzzles, each containing up to S =
10 follow-up sub-questions, resulting in 60,000 total sub-
questions and sub-answers per puzzle. We select nine rep-
resentative puzzle types (IDs: 18, 61, 62, 69, 71, 73, 77, 94,
and 99) based on the Instance Split outlined in the original
SMART-101 paper [15].

To fine-tune the MLLMs, we include only sub-questions
and sub-answers where GPT-4o predicted a correct final
answer during the decomposition process. If multiple
branches yielded the correct final answers, we retain only
the first correct branch in the data set. Details of the quality
of decomposition for each puzzle are summarized in Ta-
ble 1. Due to the high cost of preparing this dataset, we fo-
cus our experiments on three particularly challenging puz-
zles – Puzzle 18, 69, and 99 – where even state-of-the-art
models like GPT-4o exhibit notably low accuracies.

Fine-tuning details. We fine-tuned two pretrained
MLLMs: LLaVA-v1.6-Mistral-7B [29, 30] and InternVL2-
8B [7, 8]. Training was performed on 4×A100 GPUs
(80GB each) for 5 epochs using a learning rate of 1e-4. We
adopted LoRA with a rank of 128 and an alpha value of
256. Fine-tuning was applied at each stage to evaluate the
impact on model performance.

Baseline models and approaches. To benchmark the ef-
fectiveness of our proposed approach, we evaluate against
four representative baseline approaches applied to both
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Puzzle ID GPT-4o LLaVA-v1.6-Mistral-7B) InternVL2-8B

Pre-DP Pre-CoT FT-DP FT-CoT Pre-DP Pre-CoT FT-DP FT-CoT ICOV

Puzzle 18 21.81 21.33 21.33 21.67 21.33 20.33 21.00 21.67 17.00 52.67
Puzzle 69 20.10 20.00 16.33 21.00 21.00 19.00 19.67 23.00 22.33 26.00
Puzzle 99 20.58 21.00 18.00 16.33 18.00 20.33 23.67 36.67 35.33 30.67

Table 2. Test accuracy across SMART puzzles. GPT-4o is evaluated in inference-only, direct prompting mode. “Pre” and “FT” refer to
models in their pre-trained and fine-tuned states, respectively. “DP” (Direct prompting) indicates that models are prompted to directly
select the final answer, while “CoT” (Chain-of-Thought) denotes that models are prompted to generate intermediate reasoning before
answer selection.

LLaVA-v1.6-Mistral-7B [29, 30] and InternVL2-8B [7, 8]
models. In addition, we include GPT-4o [25] as a state-of-
the-art reference baseline. The four baseline variants are
described as follows:

(i) Pre-trained direct prompting (DP): This standard set-
ting evaluates the model by directly presenting it with the
SMART-101 puzzle question, without any guidance or in-
termediate reasoning steps. The model’s performance re-
flects its zero-shot capabilities based purely on pre-trained
knowledge, and is measured by its accuracy in selecting the
correct option (Oacc). (ii) Pre-trained explicit CoT: Fol-
lowing Kojima et al. [26], this setting adopts a conventional
CoT prompting strategy, encouraging the model to gen-
erate step-by-step rationales before arriving at an answer.
No additional decomposition or fine-tuning is introduced
in this approach. (iii) Finetuned direct prompting (DP):
Here, we fine-tune the model on the SMART-101 training
set and evaluate it using direct prompting, i.e., without CoT
prompting, similar to the pretrained DP setting. This mea-
sures the benefit of task-specific finetuning alone. (iv) Fine–
tuned explicit CoT: Building on the finetuned direct prompt-
ing setup, this variant adds explicit CoT prompting during
inference, enabling the fine-tuned model to reason through
the puzzle in a structured, step-by-step manner.

These baselines provide a comprehensive evaluation of
both pre-trained and fine-tuned capabilities, with and with-
out reasoning scaffolds, across multiple state-of-the-art
multimodal models.

Evaluation setup. We follow the evaluation setup from
the original SMART-101 paper [15], adopting the Instance
Split strategy. Specifically, for each root puzzle, we parti-
tion its instances into 80% for training, 5% for validation,
and 15% for testing. Model performance is assessed on the
test set using option selection accuracy (Oacc), which mea-
sures how often the model selects the correct answer from
five provided options.

Our experiments focus on Puzzle 18, 69, and 99, three
puzzles that exhibit the lowest branch accuracy under GPT-
4o’s decomposition. This indicates their higher reasoning
difficulty, making them well-suited for evaluating the effec-

tiveness of ICOV.

4.2. Empirical Results

Table 2 summarizes the test accuracy across three SMART
puzzles, including Puzzle 18 (ordering), Puzzle 69 (spa-
tial reasoning), and Puzzle 99 (counting), for GPT-4o [25],
LLaVA-v1.6-Mistral-7B [29, 30], and InternVL2-8B [7, 8],
under both pre-trained and fine-tuned settings, with Direct
Prompting (DP) and Chain-of-Thought (CoT) prompting
strategies. Across all three puzzles, standard fine-tuning on
LLaVA and InternVL2 yields only marginal gains over their
pre-trained counterparts. Notably, GPT-4o performs com-
parably. In contrast, our proposed approach ICOV, built on
InternVL2-8B, demonstrates significant improvements. For
Puzzle 18 (ordering), ICOV achieves a substantial boost in
accuracy to 52.67%, far surpassing all baselines. Improve-
ments are also observed on Puzzle 69 (26.00%) and Puzzle
99 (30.67%), underscoring the robustness of our approach
in handling structurally complex reasoning tasks by opti-
mizing both visual and textual reasoning.

5. Ablation Study and Discussion
5.1. Different Stages of Internalization

To assess how the internalization of reasoning stages influ-
ences performance, we conduct an ablation study on three
challenging puzzles from SMART-101: Puzzle 18 (order-
ing), Puzzle 69 (spatial reasoning), and Puzzle 99 (count-
ing). We fine-tune InternVL2-8B across ten progressive
stages (S0 to S9), where each stage removes one additional
intermediate sub-question-answer pair from training, mov-
ing from fully explicit CoT to fully implicit CoV.

The results, shown in Table 3, reveal a clear upward
trend in accuracy as the model progresses from early stages
toward deeper internalization. For example, Puzzle 18
achieves its highest accuracy of 52.67% at stage S8 when
trained with sub-image grounding (w), significantly outper-
forming all baseline configurations reported in Table 2, in-
cluding fine-tuned CoT-based prompting.

Interestingly, performance peaks do not always occur
at the final stage. Intermediate stages such as S6–S8 of-
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InternVL2-8B Option Accuracy (Oacc) across Fine-tuning Stages S0–S9

Puzzle S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

18 (w/o) 26.33 27.00 28.33 37.00 37.33 38.67 46.33 42.00 42.33 31.67
18 (w) 28.00 35.67 38.67 42.33 42.00 50.33 50.67 52.00 52.67 46.67

69 (w/o) 20.33 22.67 24.00 20.00 26.00 21.00 23.33 22.33 22.00 19.67
69 (w) 20.33 21.67 21.67 19.33 21.00 24.33 19.67 23.00 20.00 18.00

99 (w/o) 20.00 24.00 27.33 25.67 25.33 27.67 27.33 23.67 30.33 28.67
99 (w) 22.00 25.00 21.67 27.00 23.00 25.00 29.33 26.67 30.67 27.67

Table 3. Ablation accuracy (%) on SMART puzzles using InternVL2-8B across stage-wise fine-tuning. We evaluate the impact of ICOV’s
visual grounding by ablating sub-image scores used during fine-tuning. (w/o) indicates fine-tuning with only the generated sub-question
and sub-answer (text) pairs, without access to sub-image relevance scores. (w) includes both sub-QA pairs and sub-image scores, enabling
the model to leverage ICOV’s visual grounding mechanism. Bold values highlight the best accuracy achieved per puzzle.

ten produce the highest accuracy, suggesting partial expo-
sure to reasoning steps during training may yield stronger
generalization than fully implicit reasoning alone. This
trend is particularly evident in Puzzle 18, where accuracy
jumps sharply between S5 (50.33%), S8 (52.67%) and S9
(46.67%).

Comparing the (w) and (w/o) variants, we find that in-
corporating visual grounding through sub-image attention
scores consistently improves performance across all three
puzzles. For instance, Puzzle 99’s accuracy increases from
27.33% (S6 w/o) to 30.67% (S8 w), highlighting the effec-
tiveness of ICOV’s attention-guided fine-tuning.

5.2. Explicit CoT vs. Implicit CoV

We compare the performance of explicit Chain-of-Thought
(CoT) prompting with our proposed Implicit Chain-of-
Vision (ICOV) fine-tuning to understand their relative con-
tributions to multimodal reasoning. As shown in Table 3,
standard CoT prompting – whether applied to pre-trained
or fine-tuned models – offers only marginal improvements
over direct prompting. For instance, fine-tuned CoT on
InternVL2-8B achieves 21.67%, 23.00%, and 36.67% accu-
racy on puzzles 18, 69, and 99, respectively—modest gains
over their fine-tuned direct prompting counterparts. In con-
trast, ICOV yields substantial performance improvements
across all puzzles, despite operating in a prompt-free, fully
implicit setting. On Puzzle 18, ICOV reaches 52.67% accu-
racy—more than double the best CoT-based baseline. Sim-
ilar gains are observed on Puzzle 69 (26.00% vs. 22.33%)
and Puzzle 99 (30.67% vs. 35.33%), demonstrating ICOV’s
robustness across task types.

These results highlight a key advantage of ICOV: by in-
ternalizing the reasoning process during training, the model
learns to autonomously perform multi-step logic without
relying on external scaffolding at inference time. Unlike
explicit CoT, which requires carefully engineered prompts
and additional generation overhead, ICOV enables efficient

and scalable inference with stronger reasoning capabilities.
Overall, this comparison underscores that while explicit
CoT can enhance pretrained models to some extent, ICOV
fine-tuning leads to significantly more robust and generaliz-
able reasoning—especially for structurally complex visual
tasks where prompt engineering is insufficient.

6. Conclusion
In this paper, we introduce Implicit Chain-of-Vision
(ICOV), a fine-tuning framework that substantially ad-
vances multimodal reasoning in large vision-language mod-
els (LVLMs). By jointly optimizing for textual and visual
reasoning, ICOV enables models to internalize logical rea-
soning steps without relying on explicit prompting at infer-
ence time. Through a novel stepwise internalization strat-
egy and sub-image-based attention guidance, ICOV con-
sistently outperforms both standard fine-tuning and explicit
CoT prompting methods – particularly on complex visual
reasoning tasks in SMART-101 benchmark.

Our key contribution lies in bridging the gap between
text-driven CoT reasoning and image-based attention mech-
anisms. By decomposing puzzles into structured sub-
questions and aligning them with localized image regions,
ICOV transforms visual reasoning from a global task into
a sequence of grounded and interpretable steps. This in-
tegration not only improves the answer accuracy but also
enhances the model’s robustness and interpretability.

Looking ahead, our goal is to make ICOV more flexible
by replacing the fixed 3×3 sub-image decomposition with
dynamic region selection using learnable attention. Such
advancements would further extend ICOV’s applicability
across diverse multimodal domains beyond puzzle solv-
ing, laying the groundwork for general-purpose reasoning
in real-world scenarios.
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