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Figure 1. CaD-VI concept. We collect and pair densely captioned source images to form synthetic CaD instructions using an LLM.
The resulting synthetic CaD Visual Instruction dataset is used to train our first CaD enabled LMM. It is then improved by iterative self-
refinement where it is used to annotate new paired images from additional sources that are employed for its re-training. This results with
both an improved CaD enabled LMM and a comprehensive CaD-Inst dataset (contributed in this work).

Abstract

Comparing two images in terms of Commonalities and
Differences (CaD) is a fundamental human capability that
forms the basis of advanced visual reasoning and interpre-
tation. It is essential for the generation of detailed and
contextually relevant descriptions, performing comparative
analysis, novelty detection, and making informed decisions
based on visual data. However, surprisingly, little atten-
tion has been given to these fundamental concepts in Large
Multimodal Models (LMMs). We develop and contribute a
new two-phase approach, CaD-VI, for collecting synthetic
visual instructions, together with an instruction-following
dataset, CaD-Inst, containing 349K image pairs with CaD
instructions collected using CaD-VI. Our approach signif-
icantly improves the CaD spotting capabilities in LMMs,
advancing the SOTA on a diverse set of related tasks by up
to 17.5%. It is also complementary to existing difference-
only instruction datasets, allowing automatic targeted re-
finement of those resources increasing their effectiveness for
CaD tuning by up to 10%. Additionally, we propose an eval-
uation benchmark with 7.5K open-ended QAs to assess the
CaD understanding abilities of LMMs.

1. Introduction
Understanding the Commonalities and Differences (CaD)
between two signals (e.g., images) is a basic capability

innate to humans [18]. Spotting changes and differences
alerts us to interesting events happening in our surround-
ings, warns us of hazard, and drives us toward learning new
concepts exposed after the change or relative movement.
Understanding what is common helps structure visual in-
formation and allows differences to emerge by elimination.
Together, these form powerful tools for human learning and
acquiring world knowledge.

The forefront of modern AI shifted with the recent
emergence of foundation Large Language Models (LLMs)
[4], where the top-performing ones [1, 2, 8, 9] closely
align to human reasoning and world-knowledge capabil-
ities. LLMs’ great performance and wide applicability
quickly led to their wide adoption into most of the cur-
rent ML pipelines. In the computer vision community, this
impacted the development of Large Multi-modal Models
(LMMs) [7, 8, 16, 26, 31, 38, 42]. While multiple meth-
ods for adding multi-modal support to LLMs have been
proposed, currently the more popular and better performing
open LMMs largely rely on tuning using Visual Instructions
(VI) [31, 52]. These methods align image tokens produced
by visual encoders to be ‘understandable’ by an LLM de-
coder, allowing images to be seamlessly integrated into the
LLM decoder input context stream together with the query
text during inference.

In recent methods [7, 16, 26, 31], VI takes the form of a
multi-turn conversation: with ‘human turns’ providing im-
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Image 1: In this picture I can see a man standing and in the back I can see few 
people standing and looks like a building and I can see a pillar on the left side of the 
picture.
Image 2: In this image there is a bench on which there are two women sitting and 
there is a man walking on the floor in front of them. Beside the bench there is a 
trolley. In the background there is a wall.

Summarize the commonalities and differences about the visual content of the two 
images, including the object types, object attributes, counting the objects, 
object action, object locations, relative positions between objects, etc. 

Commonalities: 
Both images contain the presence of a man and a building or a wall in the 
background. There is also a sense of being outdoors in both pictures.

Differences:
1. Object types: Image 1 contains a man standing and a pillar, while Image 2 
includes a bench, two women sitting, a man walking, a trolley, and a wall.
2. Object actions: In Image 1, there are no specific actions mentioned, but Image 2 
has a man walking and two women sitting. The man in Image 1 is standing, while the 
man in Image 2 is walking on the floor. 
3. Object locations: The pillar in Image 1 is located on the left side, whereas the 
bench, women, and trolley in Image 2 are grouped together on the right side.
4. Relative positions between objects: In Image 1, the people are standing apart 
from each other, and the pillar is to the left of the image. In Image 2, the bench, 
women, and trolley are on the right side, and the walking man is in front of the bench 
and women.

LLM

LLM

<Image 1> <Image 2> Instruction Response

LoRA
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Visual Encoder

Image 1 Image 2

CaD-LLaVAV1

Commonalities:
Both images contain a cat as the main object. The cats are the only main objects in the images, 
and they are both located on some kind of furniture.

Differences:
1. Color: The cats have different colors. The cat in the first image is black and white, while the 
cat in the second image is gray and black.
2. Furniture: The cats are on different types of furniture. The cat in the first image is on a 
banister, wooden chair, or table, while the cat in the second image is on a picnic table.
3. Location: The cats are in different locations. The cat in the first image is indoors, while the 
cat in the second image is outdoors in a park.
4. Background: The backgrounds of the two images are different. The first image has a wall in 
the background, while the second image has grass in the background.
5. Objects: The first image has a flower pot in the background, while the second image has no 
additional objects.

CaD-
LLaVAV1

CaD-InstV1

CaD-
LLaVAV2

Additional Image Pairs with Annotation

Re-Annotation

Phase 1

Phase 2 CaD-InstV2

CaD-InstV1

“The first image shows a black and white cat while the 
second image shows a gray striped cat. In the first 
image, the cat is sitting or laying on furniture like a 
banister, wooden chair or table, while in the second 
image, the cat is lying on a picnic table in a park.”

Based on the two images and the context, summarize 
the commonalities and differences …

Captions of Image Pairs
generation

training

Image Pairs (278K)

Image Pairs (71K)

Figure 2. Pipeline of our two-phase CaD-VI: In Phase-1, we leverage captions for image pairs and an LLM to generate CaD VI data -
CaD-InstV 1 (278K). We perform visual instruction tuning on it to arrive at the Phase-1 model: CaD-LLaVAV 1. In Phase-2, we leverage
CaD-LLaVAV 1 to generate CaD VI data on additional image pairs and collect CaD-InstV 2 (71K). Visual instruction tuning with CaD-
InstV 1 and CaD-InstV 2 leads to our final model CaD-LLaVAV 2.

age context and asking the questions, and ‘LMM turns’ an-
swering them [31]. Yet, the majority of VI data focused
on providing merely a single image in the VI conversa-
tions [31]. Only few works included multi-image VI sam-
ples [3, 38], and surprisingly, very few used some form of
CaD VI data [16, 25, 26] to add CaD support in the LMM.

Due to the fundamental importance of endowing LMMs
with CaD capabilities, thus getting them closer to human
capabilities, we propose CaD-VI- a multi-phase CaD gen-
eration approach, for progressive dense and structured CaD
VI data collection (concept shown in Fig. 1), which we em-
ploy to build CaD-Inst training curriculum and associated
CaD-QA benchmark comprised of CaD-related open-ended
questions, both contributed in this work. In essence, the fi-
nal CaD-Inst curriculum associates diverse and large-scale
(349K) image pair collection with highly detailed and struc-
tured CaD summaries. CaD summaries computed for an
additional set of 7.6K image pairs, are used for extracting
open CaD-related QA resulting in CaD-QA.

As shown in Fig. 2, the Phase-1 of CaD-VI is a ‘cold
start’ where, in the absence of LMMs with substantial CaD
capabilities, we leverage image captions and an LLM to hal-
lucinate (coarse) CaD VI data - CaD-InstV 1 (278K), where
we collect structured and detailed CaD summaries for our

paired images sourced from a dense & large-scale image
collection [34]. Training on the first phase CaD-InstV 1 data
we arrive at CaD-LLaVAV 1- an LMM that has strong CaD
capabilities compared to a large variety of leading LMMs
including the very few trained with some CaD data (see Sec.
5). Next, leveraging our CaD-LLaVAV 1 model to produce
non-hallucinated, image-informed CaD data, we generate
additional CaD instructions into the collection CaD-InstV 2

(71K). Combining CaD-InstV 1 and CaD-InstV 2 we form
CaD-Inst and train our final CaD-LLaVAV 2 7B and 13B
LMMs to achieve (a) significant (up to 17.5%) absolute im-
provement over a large variety of recent SOTA LMMs em-
ploying a variety of 5 CaD-related existing closed-QA eval-
uation benchmarks (namely BISON[15], SVO Probes[13],
NLVR2[37], EQBEN[41], and COLA[36]), and (b) strong
(up to over 20%) relative improvements on our contributed
open-QA CaD benchmark - CaD-QA. Additionally, as
CaD-Inst can be safely mixed with the LLaVA VI data [30],
we show in Tab. 4 that our CaD-LLaVAV 2 models effec-
tively avoid forgetting the general capabilities of the corre-
sponding LLaVA LMMs.

Our contributions are as follows: (i) we contribute CaD-
Inst- a large-scale visual instruction tuning dataset for en-
hancing CaD reasoning capabilities of LMMs; (ii) we con-
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tribute CaD-QA- an open QA evaluation benchmark for
assessing CaD capabilities; (iii) we contribute and open
source a CaD-VI methodology for collecting CaD instruc-
tion tuning data and re-purposing datasets with existing dif-
ference annotations; (iv) we demonstrate significant (up to
17.5%) improvements in CaD reasoning for LMMs trained
using CaD-Inst as well as potential to scale CaD-Inst via
self-improvement by CaD-Inst-trained models.

2. Related Work
Large Multimodal Models. LMMs have shown signifi-
cant advancements in integrating visual and textual data,
enhancing the ability of deep neural networks to understand
and generate multimodal content. BLIP-2 employs a boot-
strapping approach that leverages frozen image encoders
and large language models through a querying transformer,
achieving remarkable results on various vision-language
tasks with fewer parameters compared to previous mod-
els [27]. Similarly, MiniGPT-4 [51] and LLaMA-Adapters
[45] utilize pretrained visual and language models, with
adapters aligning image tokens to language tokens, improv-
ing the efficiency and performance of multimodal under-
standing and generation. In addition to these early mod-
els, the LLaVA series [31], including LLaVA 1.5 [30] and
LLaVA 1.6 [32], have enhanced visual instruction tuning,
enabling better handling of single-image inputs and more
accurate multimodal outputs. The InternLM XComposer
2.0 VL [44], EMU2 [39], Otter [26], SparklesChat [16],
and MMICL [48] extend these capabilities by incorporating
multiple images as input, thereby enriching the models’ un-
derstanding and generation of text based on complex visual
scenes. These models showcase the evolution from single-
image to multi-image inputs, highlighting the progress in
multimodal learning architectures and applications.
Visual Instruction Tuning Datasets. The success of
LMMs builds on the collection of high-quality visual in-
struction tuning data, either constructed from existing VQA
datasets [6, 11, 12, 17, 28], curated image-text pairs [51]
and LLM-generated instruction-following data with input
of rich human annotations [25, 30, 31, 46, 47]. However, the
collection of multimodal data for learning commonalities
and differences between two images is still under-explored.
Image Commonalities and Differences. Only a few
datasets contain difference-only related annotation [19, 25].
Spot-the-diff [20] collects human-annotated short change
descriptions for surveillance video frames. Our CaD-InstV 1

data collection is partially inspired by the differences-only
data collection done by [25] as a small part of their VI
strategy. However, different from [25] we: (i) collect both
differences and commonalities (compared to only differ-
ences in [25]); (ii) we leverage a significantly more dense
caption-source of [34] compared to [5] used in [25]; (iii)
we are structuring our differences in CaD according to 6

axes (whichever applicable on case basis) - object types, at-
tributes, counting, actions, locations, and relative position-
ing, also explicitly asking the LLM to extract (from the
dense captions) information along these axes, while [25]
produced unstructured difference description text; (iv) un-
like [25] we are not relying on the existence of manually
collected object bounding boxes; (v) the scale of our data
is approx. 4 times larger than of [25]. Due to these dif-
ferences, as evident from the direct comparison in Tab. 5,
training the same model on CaD-InstV 1 has significant per-
formance advantages over training on CaD instructions of
[25]. To summarize, our work focuses on CaD understand-
ing, largely neglected by the visual instruction tuning com-
munity. We propose a new CaD-VI approach for collecting
synthetic visual instructions and enhancing the CaD anal-
ysis capabilities in LMMs. CaD-VI not only advances the
state-of-the-art in related tasks by significant margins but
also complements existing datasets [19, 25] by enabling
their automatic targeted refinement, thereby improving their
effectiveness for CaD tuning.

3. Two-Phase Visual Instruction Tuning
As illustrated in Fig. 2, our CaD-VI consists of two phases:
in Phase-1, we employ an LLM to generate summary of
CaD for image pairs (Sec. 3.1) and perform visual instruc-
tion tuning on the collected data (Sec. 3.2); in Phase-2, we
leverage the Phase-1 model to generate CaD on additional
image pairs and perform training with combined instruction
data from both phases (Sec. 3.3).

3.1. Phase-1a: LLM Instruction Data Collection
In our first phase, we leverage an LLM to generate a sum-
mary of commonalities and differences for a pair of two
images, as shown in Fig. 2 (top row). Specifically, we
construct image pairs and prompt an LLM, supplying it
with two image captions (one per image) and an instruction
prompt asking it to summarize all the commonalities and
differences according to the provided captions, contributing
to our first phase CaD instruction data collection denoted as
CaD-InstV 1.
Image Source. We select the Localized Narratives
dataset [34] which consists of 873K image-caption pairs
with diverse samples sourced from COCO [5, 29],
Flickr30K [43], ADE20K [50] and Open Images [23]. The
captions are generated by transcription from spoken de-
scriptions of the image content, which are dense, detailed,
and descriptive with an average length of 36.5 words. To
cover comprehensive visual contents and increase the diver-
sity in terms of commonalities and differences, we collect
278K image pairs with different levels of similarity between
their captions. We compute similarity by counting the num-
ber of overlapping nouns in the corresponding captions.
LLM Data Generation. In this work, we focus on employ-
ing open-source foundation models for data collection. The
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User: Image 1: <image> Image 2: <image> Summarize the commonalities and 
differences about the visual content of the two images, including the object types, object 
attributes, counting the objects, object actions, object locations, relative positions 
between objects, etc. 
Assistant: <summary> 
User: Which image suits the caption <chosen_caption> better? A. Image 1 B. Image 2
Answer with the option's letter from the given choices directly.
Assistant: <choice>
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(a) Characteristics in CaD summaries
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(b) Questions in CaD-QA

(c) Axis counts in CaD summaries (d) Instruction template

Figure 3. (a) Distribution of characteristics (first two words) in the CaD summary collected in CaD-InstV 1; (b) Distribution of question
types (first five words) in the evaluation benchmark CaD-QA; (c) Axis counts in CaD summaries; (d) Two-turn conversation template.

current open-source LMMs do not have strong capabilities
of visual reasoning and instruction following when process-
ing multiple input images. In this case, using caption as a
symbolic representation of each image and employing an
LLM with strong text instruction-following ability for gen-
eration of comparison summary of multiple input images
is a more robust way of data collection than using open-
source LMMs. The practice of this data collection pipeline
with LLMs and dense captions is verified in the original
LLaVA [31] and many following works [16, 25, 46].

We leverage the Mixtral 8×7B LLM [21] for generating
detailed and structured summaries of commonalities and
differences for pairs of images. As the LLM can only accept
text as input, in Phase 1 we use image captions to represent
visual content of images. This is a rather crude approxima-
tion, which is alleviated in Phase 2 of our CaD-VI approach.
To encourage the diverse and creative generation of com-
monalities and differences, we do not provide in-context
examples of expected output in the prompt to the LLM. Fur-
thermore, we specifically prompt the LLM to structure the
commonalities and differences summaries according to the
following 6 visual aspects: (i) object types; (ii) attributes;
(iii) counts; (iv) actions; (v) locations; and (vi) relative po-
sitions; as illustrated in Fig. 2. We provide detailed prompts
in the supplementary. Importantly, LLM is not forced to
produce all 6 aspects in every summary; they are generated
adaptively according to the available content.
Generated Data Statistics. In CaD-InstV 1 we collected

structured summaries of CaD for 278K image pairs, with
average length of 157 words (40 for commonalities and
117 for differences). The summaries are structured accord-
ing to 6 axes, appearing unevenly on a case-to-case basis
based on the LLM decision. We illustrate the distribution of
data characteristics in Fig. 3(a), and the total observed axis
counts in Fig. 3(c). More statistics and details are provided
in the supplementary.

CaD visual instructions data. We construct a two-turn
conversation for each image pair. In the first turn, we de-
fine the task of summarizing CaD by providing the encoded
visual tokens of the two images and instructing the model to
summarize the CaD, where the response part of the turn is
the LLM-generated structured summary collected above. In
this instruction, we do not provide the image captions, forc-
ing the model to rely only on image tokens to complete the
task. In the second turn, we reinforce the image-text align-
ment by employing a simple task of text-to-image retrieval
to avoid forgetting the model’s general capabilities. We
randomly sample one of the two captions and request the
model to select the image (from the current pair) to which
the caption belongs. Through ablation study in Tab. 7, we
show that while this task itself does not lead to satisfying re-
sults, combining it with the task of summarizing common-
alities and differences results in significant improvement.
The template for the two-turn conversation is illustrated in
Fig. 3(d).
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3.2. Phase-1b: CaD Visual Instruction Tuning
Architecture. As illustrated in Fig. 2, we use our
collected CaD-InstV 1 data to perform visual instruction
tuning using the open-sourced code of LLaVA-1.5 [30]
LMM. The LLaVA-1.5 model consists of ϕL(·; θL) - a
pretrained Vicuna 1.5 [49] LLM (finetuned from LLama
2 [40]); ϕV (·; θV ) - a pretrained visual encoder CLIP
ViT-L/14@336px [35]; and ϕM (·; θM ) - a two-layer MLP
projector converting the visual encoder tokens to post-
embedding layer LLM tokens.

Given a pair of two images xV1
, xV2

and the instruc-
tion xI , the MLP projects the visual features computed
by the visual encoder into embedded language tokens, i.e.
vk = ϕM (ϕV (xVk

; θV ); θM ), k ∈ {1, 2}. Then the pro-
jected visual features and instruction text tokens are con-
catenated and fed into the LLM, where the response text
tokens are generated in an autoregressive manner, i.e.

x̂i
R = ϕL([v1, v2, xI , x̂

<i
R ]; θL), (1)

where x̂i
R denotes the i-th token in the generated response.

Training. We finetune the LLaVA-1.5 model using the
LLaVA [31] pipeline. Specifically, following LLaVA pre-
training, we finetune only the pretrained projection MLP
and the (frozen) LLM with LoRA adapters [14]. We min-
imize the CLM loss of the next token prediction in the re-
sponses:

LCLM =
∑
i

− log p(x̂i
R|V1, V2, xI , x

<i
R ) (2)

To preserve the general VL capabilities of the LMM, we
merge CaD-InstV 1 with the finetuning data of LLaVA-1.5
(665K samples). In Tab. 4 we show that CaD-VI in-
deed preserves the general LMM capabilities compared to
LLaVA-1.5 as evaluated on the popular SEED benchmark
[24]. The Phase-1 CaD visual instruction tuning results in
our cold-start model CaD-LLaVAV 1 which is an LMM that
can be leveraged for annotating visual commonalities and
differences.

3.3. Phase-2: Data Collection and Training
Phase-2a: LMM-based CaD Instruction Collection.
While in Phase 1 we used an LLM to extract a CaD sum-
mary based on human-generated captions, for Phase 2 data
collection we leverage our Phase 1 model CaD-LLaVAV 1

and additional image pairs to extract the CaD summaries
informed by the images directly. Here we select the Scene-
Difference [25] collection as an additional image source. It
contains 71K pairs of similar images from COCO [29] and
provides annotation of unstructured difference-only sum-
maries (see Fig. 2 bottom left for an example). We feed
both the image pairs and the original annotations into our
CaD-LLaVAV 1 model, and generate a structured summary
of both commonalities and differences. The exact prompt

is provided in the supplementary. This leads to our phase-2
CaD instruction data - CaD-InstV 2. As shown in Tab. 5,
our collected CaD instructions significantly improve over
the utility of the original [25] annotations. As part of our
analysis in Tab. 5 and 6, and additional experiments pro-
vided in supplementary, we also show that similarly out-of-
distribution image pair collections or even unlabeled image
pair collections can be effectively leveraged for Phase-2.

In Phase-2, we generate CaD data leveraging both cap-
tions and the CaD image analysis capabilities of our Phase-
1 model. This significantly reduces hallucinations and im-
proves the quality of the Phase-2 stage CaD dataset as evi-
dent by the significant performance improvement obtained
by Phase-2 model over Phase-1 model (Tab. 5 E and F). In
the ablation in Sec. 6 (Tab. 6) we also show that image cap-
tions can be included in Phase-2 data collection.

In Phase-1, we have image pairs of different similarity
levels while in Phase-2 we have highly similar image pairs
which lead to more fine-grained difference summaries. We
combine data of both phases.
Phase-2b CaD Visual Instruction Tuning We follow the
Phase-1b introduced in Sec. 3.2 for CaD visual instruc-
tion tuning. Here we finetune on a combination of LLaVA
1.5 [30] finetune data (665K), CaD-InstV 1 data (278K) and
CaD-InstV 2 data (71K). This phase of CaD visual instruc-
tion tuning leads to the Phase 2 model, denoted as CaD-
LLaVAV 2.

4. Benchmark of Open-Ended CaD QA
In order to evaluate the capability of LMMs on answering
open-ended questions regarding commonalities and differ-
ences of a pair of two images, we construct and contribute
the CaD-QA benchmark.
Data Collection. Similar to the data collection pipeline in-
troduced in Sec. 3.1, we employ Visual Genome [22] and
the detailed image captions from SVIT [47] as image &
caption source. We collect 7.5K image pairs with 8 or
more overlapping nouns in their captions. For each pair,
we employ the Mixtral 8×7B LLM to produce the struc-
tured CaD summaries from the captions. Next, we prompt
Mixtral with both the image captions and the CaD summary,
instructing it to generate a multi-turn conversation with sev-
eral rounds of Q&A, providing some in-context examples
of the desired layout (see supplementary for the prompt).
Finally, we randomly select one Q&A per conversation.
Benchmark Statistics. There are 7520 QA pairs with an
average answer length of 26 words. Among these, we also
include 2916 questions asking about the content of only one
of the two images. It requires the precise attention of the
LMM on the corresponding image to correctly answer these
questions. Our CaD-QA covers diverse question types as
illustrated in Fig. 3(b).
LLM-assisted Evaluation. Motivated by LLMs’ ability
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Dataset # Instruct.
Data

BISON SVO NLVR2 EQBEN COLA
Random chance 50% 50% 50% 25% 25%

SparklesChat 6.5K 56.70% 43.93% 58.00% 19.17% 20.00%
Otter 2.8M 40.67% 47.33% 52.00% 8.33% 8.10%

MMICL 5.8M 80.00% 88.13% 56.67% 20.83% 25.71%
EMU2-Chat 1.3M 46.00% 47.93% 60.00% 7.50% 13.33%
InternLM-

XComposer2-
VL

>600K 80.67% 82.07% 66.67% 25.00% 32.38%

LLaVA 1.6 7B <1M 66.00% 70.40% 58.67% 20.83% 11.90%
LLaVA 1.6 13B <1M 81.33% 82.13% 60.00% 17.50% 24.76%

LLaVA 1.5 7B 665K 54.00% 46.80% 61.33% 17.50% 7.62%
LLaVA 1.5 13B 665K 59.33% 56.27% 66.00% 16.67% 12.38%

CaD-VI 7B 1M 95.33% 92.73% 66.67% 39.17% 40.95%
CaD-VI 13B 1M 96.67% 93.00% 69.33% 42.50% 43.33%

Table 1. Performance on closed-ended VQA tasks with image
pairs in accuracy. Here the method CaD-VI denotes our Phase-
2 model CaD-LLaVAV 2.

to judge response quality consistently with human assess-
ment [49], we employ the Mixtral 8×7B LLM to compare
the generated responses to the collected open-ended QA re-
sponses. We feed the question, correct answer, and the pre-
dicted answer into the LLM and instruct it to provide a rat-
ing between 0 and 5 for the predicted answer quality. We
provide the prompt in the supplementary. In order to mit-
igate the bias from the the same LLM used for evaluation,
we include additional evaluations with different LLMs, in-
context examples of scoring cases and human study in the
supplementary.

5. Experiments
Evaluation Datasets We evaluate on several VQA bench-
marks of closed-ended and open-ended questions. For
closed-ended VQA on image pairs, we include BI-
SON [15] and SVO Probes [13] both consisting of sam-
ples with an image pair and a text query that needs to be
matched with one of the images in the pair (chance is 50%).
EQBEN [41] and COLA [36] contain samples composed
of a pair of two images together with the two textual de-
scriptions. The goal is to correctly match images with cor-
responding texts (chance is 25%). Furthermore, we evalu-
ate on NLVR2 [37] which comprises samples of a pair of
two images and a reasoning sentence. The task is to assess
the correctness of the reasoning and has a random chance
of 50%. We also evaluate SEED-Bench Video [24] with
two frames sampled from the video to explore the gener-
alization value of our CaD tuning for video understanding.
SEED-Bench Video contains three partitions from SEED-
Bench and has multi-choice questions on action recogni-
tion/prediction or procedure understanding with four an-
swer options per question. For open-ended tasks, use the
LLM-as-a-judge metric (Sec. 4). We evaluate open-ended
QAs on our CaD-QA. Furthermore, we also directly evalu-
ate the quality of LMM predicted CaD summaries for 210
image pairs in COLA with shorter summaries generated
from brief captions, and for the 7.5K lengthy summaries

Dataset CaD-
QA

VG
comm.

VG
diff.

COLA
comm.

COLA
diff.

SparklesChat 3.01 2.41 3.12 1.52 1.22
Otter 2.20 1.88 1.97 1.37 0.81

MMICL 2.01 1.79 1.94 1.73 0.59
EMU2-Chat 1.20 1.04 1.08 1.22 0.41

InternLM-XComposer2-
VL 2.90 2.08 2.69 1.72 1.36

LLaVA 1.6 7B 3.10 2.23 2.73 1.71 1.22
LLaVA 1.6 13B 3.19 2.19 2.69 1.93 1.01

LLaVA 1.5 7B 2.54 1.79 1.75 1.44 1.02
LLaVA 1.5 13B 2.65 2.16 2.41 1.57 1.10

CaD-VI 7B 3.29 2.32 3.85 2.14 1.25
CaD-VI 13B 3.34 2.58 3.68 2.13 1.31

Table 2. Performance on CaD-QA and tasks of CaD summary
prediction evaluated using LLM-as-a-judge ratings (range 0 to
5). Here the method CaD-VI denotes our Phase-2 model CaD-
LLaVAV 2.

from CaD-QA generated from detailed VG captions. More
details and statistics of the datasets are provided in the sup-
plementary.

Implementation Details We leverage the Mixtral 8×7B In-
struct v0.1 and set the maximum token size to 750 data
collection and 20 for open-ended task evaluation. For vi-
sual instruction tuning, we use the official implementation
of LLaVA and tune the LLaVA 1.5 7B model with LoRA.
We set the batch size to 128 and LoRA learning rate for
LLM and the projector is set to 1 × 10−4 and 2 × 10−5

correspondingly. All experiments are run on 4×A100 80G
GPUs. More details are in supplementary.

Comparison to State-of-the-Art LMMs
We first compare our final model CaD-LLaVAV 2 (de-

noted by CaD-VI in Table) to state-of-the-art LMMs
on closed-ended VQA in Table 1. SparklesChat [16],
Otter [26], MMICL [48], EMU2-Chat [38], InternLM-
Xcomposer2-VL [44] all include samples with multi-image
inputs in the visual instruction tuning while LLaVA 1.5 [30]
and LLaVA 1.6 [32] are tuned with only single image in-
structions. The evaluated benchmarks are challenging due
to the visually similar image pairs with subtle compositional
differences where the LMMs could easily make an incorrect
decision leading to performance below random chance. Our
CaD-VI 7B model already outperforms all the other base-
lines on the five benchmarks and our 13B finetuned model
further boosts the performance. We also include the com-
parison to a recent video LMM in the supplementary.

Table 2 demonstrates the comparison to the baseline
LMMs on open-ended tasks of CaD-QA and of CaD sum-
mary prediction on image pairs. Our CaD-VI models out-
perform the baselines on four of the five open-ended tasks,
with the exception of COLA difference summary where our
13B model achieves a rating (1.31) close to the best per-
forming InternLM-XComposer2 model (1.36). We include
additional evaluations with different LLMs, in-context ex-
amples of scoring cases and human study in the supple-
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CaD-
LLaVA

:

:

LLaVA

GT: In Image 2, there is a well-equipped shower, a bathtub, a 
commode, a mirror, a wooden shelf, and various 
items such as a green candle, air freshener spray, and silver faucet. 
These objects are not present in Image 1.

Image 1 Image 2

In Image 2, there is a toilet visible in the bathroom, which is 
not present in Image 1. The man is standing 
in front of the toilet while holding an umbrella.

In Image 2, there are several objects that are not present in 
Image 1, including a man, a mirror, a sink, a 
toilet, a shower, a window, a door, and a ceiling. The man is 
standing in the bathroom, and the mirror, sink, 
toilet, and shower are all located in the same room. The 
window and door are also present in the 
bathroom, and the ceiling is visible at the top of the image.

Q: What objects are present in Image 2 that are not in Image 1?

Figure 4. Example of Q&A pairs in CaD-QA together with LMM
predicted answers (Red and green texts denote incorrect and cor-
rect description).

# input frames 1 2

SparklesChat 21.81% 19.09% (▼-2.72%)
Otter 18.19% 23.00% (▲+4.81%)

EMU2-Chat 43.43% 41.09% (▼-2.34%)
InternLM-XComposer2-VL 7B 41.07% 40.16% (▼-0.91%)

LLaVA 1.6 7B 41.95% 42.03% (▲+0.08%)
LLaVA 1.6 13B 41.85% 41.35% (▼-0.50%)

LLaVA 1.5 7B 37.43% 36.68% (▼-0.75%)
LLaVA 1.5 13B 40.12% 38.78% (▼-1.34%)

CaD-VI 7B 38.40% 40.44% (▲+2.04%)
CaD-VI 13B 40.16% 43.09% (▲+2.93%)

Table 3. Performance of multi-choice questions on SEED-Bench
video partitions by feeding one or two frames into the LMMs.

mentary, which shows that the Mixtral-assisted evaluation
is valid as it maintains the same ranking as when using
strongest LLMs as judge.

In Fig. 4, we show examples of Q&A pairs in CaD-
QA together with predicted answers from CaD-LLaVAV 2

model and the vanilla LLaVA 1.5 model. The vanilla
LLaVA model has an incorrect answer by mistakenly com-
bining the contents in two images (the man is standing in
front of the toilet while holding an umbrella), demonstrat-
ing lacking of capability of properly comparing two images.
Our CaD-LLaVAV 2 manages to correctly differentiate be-
tween the two images, attend to the corresponding content
queried and draw a summary of comparison. More quali-
tative results on CaD-QA and BISON can be found in the
supplementary.

Furthermore, we explore whether our CaD instruc-
tion tuning improves video understanding evaluated using
SEED-Bench Video in Table 3. In the evaluation set-
ting of LLaVA, only one frame per SEED-Bench video is

Model LLaVA 1.5
7B CaD-VI 7B LLaVA 1.5

13B CaD-VI 13B

SEED-Image 67.34% 67.48% 68.83% 69.11%

Table 4. Performance of multi-choice questions on SEED-Bench
image partitions for evaluation of general VL capabilities with
single-image input.

passed to the LMM. To explore the impact of our CaD
tuning, we compare this to evaluating using two frames
as input. As shown in Table 3, although multiple base-
line LMMs achieve better performance in single-frame set-
ting, our CaD-VI 13B model performs the best in the two-
frame setting with a significant performance improvement
of 2.93% on top of the single-frame performance. The only
higher improvement is achieved by Otter, which however
struggles below the 25% chance level performance. This
underlines that our CaD tuning improves the temporal un-
derstanding between video frames.

Additionally, to verify that introducing multi-image CaD
data into the tuning does not lead to catastrophic forget-
ting of general single-image input LMM capabilities, we
also evaluate the SEED-Bench Image partitions and re-
port the results in Table 4. Here we directly compare to
same architecture baseline of LLaVA 1.5 fine-tuned using
its single-image LLaVA mix 665K data. Table 4 demon-
strates that our CaD tuning indeed preserves the compe-
tence in single-image understanding. Evaluation on more
general VL benchmarks like MME [10] and MMBench [33]
can be found in the supplementary.

Training Data BISON SVO EQBEN COLA CaD-
QA

A: LLaVA mix 54.00% 46.80% 17.50% 7.62% 2.54

B: LLaVA mix + ScDiff
orig. annot. 92.67% 90.07% 22.50% 33.81% 2.90

C: LLaVA mix + ScDiff our
annot. (from scratch) 88.67% 90.80% 38.33% 36.67% 3.17

D:
LLaVA mix + ScDiff our

annot. (refined from
orig. annot.)

94.67% 91.80% 32.50% 34.76% 3.17

E: LLaVA mix + CaD-InstV 1 92.00% 92.27% 34.17% 36.67% 3.27

F:

LLaVA mix +
CaD-InstV 1 + ScDiff

our annot. (refined from
orig. annot.)

95.33% 92.73% 39.17% 40.95% 3.29

Table 5. Ablation of phase-2 data collection from 71K image pairs
in Scene-Difference (ScDiff). We use CaD-LLaVAV 1 to generate
CaD on ScDiff either from scratch or by refining from the original
annotation of unstructured difference-only summaries. Training
settings in E and F lead to our CaD-LLaVAV 1 and CaD-LLaVAV 2

models correspondingly.
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Training Data BISON SVO EQBEN COLA CaD-
QA

A: LLaVA mix 54.00% 46.80% 17.50% 7.62% 2.54

B: LLaVA mix + A/G orig.
captions only 55.33% 55.67% 3.33% 2.86% 2.78

C: LLaVA mix + A/G our
annot. (from scratch) 90.00% 88.53% 40.83% 42.86% 3.21

D:
LLaVA mix + A/G our

annot. (given orig.
captions)

88.00% 86.87% 43.33% 30.48% 3.06

Table 6. Ablation of phase-2 data collection from 66K pairs of
video frames in Action Genome and GEBC (A/G). We use CaD-
LLaVAV 1 to generate CaD on A/G either from scratch or with the
prior information from the original frame captions.

6. Ablations

Phase-2 Data Collection analysis. Our Phase-2 data col-
lection introduced in Sec. 3.3 can be used to leverage image
pairs from various sources for producing effective CaD in-
structions. We first ablate the data collection from the 71K
image pairs in Scene-Difference [25] (ScDiff) which con-
tains annotation of unstructured difference-only summaries.
As shown in Table 5, training with original annotation of
difference-only summaries (row B) significantly improves
on the baseline of training with LLaVA data only (row A).
Then we show that using CaD-LLaVAV 1 to generate CaD
instructions on ScDiff remarkably improves further, either
if used from scratch (row C) or by refining from the original
annotation (row D, also illustrated in Fig. 2 bottom row).
Training with our re-annotation from scratch outperforms
the original annotation on all datasets except for BISON.
Our re-annotation by refining the original annotation leads
to a more balanced performance improvement and is used
as the phase-2 instruction data CaD-InstV 2. We combine
this with our phase-1 data CaD-InstV 1 and demonstrate the
further performance boost in row F of Table 5.

In order to show the robustness of CaD data collection
capability using our CaD-LLaVAV 1 model, we also ex-
plore applying our phase-2 data collection to visually sim-
ilar frames from user videos in Action Genome and GEBC
(A/G). In Table 6, we first train a baseline using original
frame captions only and a simple instruction task of im-
age description (row B), which leads to a significant perfor-
mance drop on EQBEN and COLA, and minimal improve-
ment on other datasets. Then we use our CaD-LLaVAV 1

to generate CaD instructions on the frame pairs either from
scratch (row C) or conditioned on the frame captions (row
D). Interestingly, on most datasets CaD instructions gener-
ated by our CaD-LLaVAV 1 from scratch are found to be
more effective than ones generated using original captions
conditioning, likely due to lack of detail in these captions.
This once again demonstrates that our model is effective
in generating CaD instructions on unlabeled data. In the

Training Data BISON SVO CaD-
QA

VG
comm.

VG
diff.

A: LLaVA mix 54.00% 46.80% 2.54 1.79 1.75

B: LLaVA mix + t2i retriev. 58.00% 51.33% 2.47 1.58 1.46

C: LLaVA mix + comm. 64.67% 79.73% 3.23 2.67 2.52

D: LLaVA mix + diff. 55.33% 72.13% 3.24 1.97 2.89

E: LLaVA mix + comm. + diff. 72.00% 82.60% 3.24 2.13 3.42

F: LLaVA mix + comm. + diff.
+ t2i retriev. 92.00% 92.27% 3.27 2.21 3.69

G: (F) + CaD-InstV 2 95.33% 92.73% 3.29 2.32 3.85

Table 7. Ablation on components in the instruction data. Training
settings in F and G lead to our CaD-LLaVAV 1 and CaD-LLaVAV 2

models correspondingly. Here t2i retriev. refers to the text-to-
image retrieval task (see Sec. 3.1). Training settings in F and G
lead to our CaD-LLaVAV 1 and CaD-LLaVAV 2 models.

supplementary, we further show that our phase-2 data col-
lection is effective on out-of-distribution video-surveillance
data of Spot-the-diff (SpotDiff) dataset [20].
Analysis of CaD Instruction Data Components We ver-
ify the effectiveness of the components in our instruction
data by ablating on the different combinations of our tuning
tasks, including: (i) commonality summary (comm.); (2)
difference summary (diff.); and (iii) text-to-image retrieval
(t2i retriev.) in Table 7. Training solely on the t2i retrieval
task (row B) leads to minimum performance improvement
on BISON and SVO Probes, and performance degradation
on the three benchmarks of the open-ended tasks due to
lacking of any CaD learning. Training with the common-
ality (row C) and difference summary (row D) tasks sepa-
rately lead to a significant boost on the VG comm (2.67) and
VG diff (2.89) tasks correspondingly. Training with com-
binations of the three tasks (F) boosts the performance in
comparison to the case of each single component, except for
VG comm where the commonality training (row C) leads to
better results on this task. Finally, combining phase-1 and
phase-2 data (row G) leads to further performance boosts
on most of the benchmarks.

7. Conclusions
We contribute CaD-VI, a two-phase strategy for collect-
ing Commonalities and Differences (CaD) Visual Instruc-
tion data, resulting in CaD-Inst with 349K samples that sig-
nificantly improve CaD and related comparative abilities in
LMMs. We also introduce CaD-QA, a 7.6K open-ended
QA benchmark for evaluating CaD across image pairs. Our
extensive evaluation demonstrates substantial gains using
CaD-VI, which complements and enhances existing CaD
resources. This work advances the investigation of CaD ca-
pabilities in LMMs and paves the way for future CaD VI
tuning.
Limitations Our current approach is limited to CaD be-
tween two images; extending to three or more remains fu-
ture work.
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