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1. Introduction
As additional results, we include more evaluations on the
open-ended CaD-QA with different LLMs, in-context ex-
amples of scoring cases and human study in Sec. 2.1.
Then we report results of CaD-VI on two more general
vision-language benchmarks (Sec. 2.2). Further include
the evaluation of a video LMM in Sec. 2.3. We report
the error bars (Sec.2.4), analyze the Phase-2 data collec-
tion on Out-Of-Distribution data (Sec. 2.5). Finally, we
show qualitative results of the collected CaD summaries
(Sec. 2.6), and compare LMM predictions on our CaD-QA
benchmark (Sec. 2.7), and LMM predictions on the BISON
dataset (Sec. 2.8).

For further insights into our approach CaD-VI, we re-
port more statistics on our generated data (Sec. 3.1), and
statistics on the external evaluation datasets (Sec. 3.2).
We provide more implementation details (Sec. 4) includ-
ing the specifics of baseline methods, data generation, train-
ing and evaluation details.

At last, we provide the list of assets (Sec. 5) used in this
project.

2. Additional Results
2.1. Additional Evaluations of Open-Ended CaD

QA

Different LLMs. In order to mitigate the bias from the
same LLM used for evaluation and show the impact of dif-
ferent LLMs on the LLM-assisted evaluation, we further
employ LLaMA 3.1 70B and GPT4o mini for the evalua-
tion of CaD QA and report the resutls in Tab. 1. In case
of LLaMA 3.1 70B and GPT4o mini, CaD-VI still outper-
forms all the other competitors. However, there is a drop in
the margin of its outperformance in comparison to the case
of Mixtral model assisted evaluation.
Scoring standard descriptions. We further explore the im-

Model Mixtral 8×7B LLaMA 3.1 70B GPT4o mini

SparklesChat 3.01 2.91 2.62
Otter 2.20 1.70 1.66

MMICL 2.01 1.97 2.00
EMU2-Chat 1.20 1.26 1.34
InternLM-

XComposer2-VL 2.90 2.79 2.61

LLaVA 1.6 7B 3.10 2.80 2.54
LLaVA 1.6 13B 3.19 3.00 2.67

LLaVA 1.5 7B 2.54 1.98 1.86
LLaVA 1.5 13B 2.65 2.11 1.98

CaD-VI 7B 3.29 3.02 2.72
CaD-VI 13B 3.34 3.10 2.78

Table 1. Impact of different LLMs on the LLM-assisted evaluation
of the open-ended CaD QA benchmark.

Model Mixtral
8×7B

Mixtral
8×7B

LLaMA
3.1 70B

LLaMA
3.1 70B

In-context No Yes No Yes

SparklesChat 3.01 2.08 2.91 3.14
Otter 2.20 1.17 1.70 2.02

MMICL 2.01 1.72 1.97 2.40
EMU2-Chat 1.20 1.01 1.26 1.42
InternLM-

XComposer2-VL 2.90 2.52 2.79 3.15

LLaVA 1.6 7B 3.10 2.06 2.80 2.97
LLaVA 1.6 13B 3.19 2.16 3.00 3.13

LLaVA 1.5 7B 2.54 1.56 1.98 2.18
LLaVA 1.5 13B 2.65 1.77 2.11 2.33

CaD-VI 7B 3.29 2.54 3.02 3.20
CaD-VI 13B 3.34 2.68 3.10 3.31

Table 2. Impact of in-context examples of scoring cases on the
LLM-assisted evaluation of the open-ended CaD QA benchmark.

pact of scoring standard descriptions in the evaluation of
open-ended CaD QA. We provide in-context examples for
cases of different scores. In Tab. 2, we report the evaua-
tion results with and without in-context examples of scor-
ing cases. In all cases. CaD-VI still outperforms the other
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competitors. Evaluation with in-context examples of ratings
leads to drop of ratings on Mixtral 8×7B but slight increase
of rating on LLaMA 3.1 70B. This could due to the better
in-context learning capability of LLaMA 3.1.

Model CaD-VI
13B

LLaVA
1.6 13B

LLaVA
1.5 13B

InternLM-
XComposer2-

VL
SparklesChat

Rating 3.61 3.42 2.84 3.05 3.30

Table 3. Human evaluation on 150 randomly sampled questions
from the open-ended CaD QA benchmark.

Human study. Furthermore, we randomly sampled 150
open-ended questions from the evaluation benchmark and
asked three volunteers to manually rate the predictions of
the compared LMMs in the range between 0 and 5. To re-
duce the rating efforts, we include the 13B version of CaD-
VI and LLaVA models in this task.

As shown in Tab. 3, the results indicate the human pref-
erence of answers from CaD-VI, which is aligned with the
choice of LLMs. In the analysis of feedback from the
human study, we also have some interesting conclusions:
(1) The verbose descriptions with hallucinations from the
talkative SparklesChat are better rated by humans than
LLMs (2) InternLM-XComposer2-VL could generate cor-
rect and concise descriptions of visual contents but is not
good at the task of comparison (3) LLaVA 1.6 could see
more visual details than LLaVA 1.5 due to the AnyRes (any-
resolution) pipeline which benefits the comparison reason-
ing. In this case, using an architecture with more visual to-
kens to focus on local regions of images would allow com-
parison of more visual details via the comparison visual in-
struction tuning.

2.2. Additional Evaluations on General Vision-
Language Benchmarks

Model MMBench MME Perception MME
Cognition

LLaVA 1.5 7B 65.80% 1498.09 274.64
CaD-VI 7B 65.38% 1493.21 328.57

LLaVA 1.5 13B 69.07% 1541.69 300.36
CaD-VI 13B 68.27% 1530.61 306.07

Table 4. Evaluation of CaD-VI on general vision-language bench-
marks MMBench and MME.

In the main paper, we report performance of CaD-
VI on the general vision-language benchmark SEED-
Bench image (Tab. 2 in the main paper) and SEED-Bench
video(Tab. 3 in the main paper), which verifies that intro-
ducing multi-image CaD data into tuning does not lead to
catastrophic forgetting of general single-image input LMM
capabilities.

Additionally, we compare the performance of CaD-VI
to the original LLaVA models on MME [8] and MM-
Bench [28] in Tab. 4. We see that after introducing CaD
data into tuning, there is only a slight performance drop of
CaD-VI in comparison to the original LLaVA on MMBench
and MME Perception. On MME Cognition tasks, CaD-VI
even has some performance improvements.

2.3. Evaluation of VideoLLaMA2

Model BISON SVO NLVR2 EQBEN COLA CaD-QA

VideoLLaMA2 58.00% 61.00% 64.00% 11.67% 16.67% 2.22

CaD-VI 7B 95.33% 92.73% 66.67% 39.17% 40.95% 3.29
CaD-VI 13B 96.67% 93.00% 69.33% 42.50% 43.33% 3.34

Table 5. Evaluation of VideoLLaMA2[3] on the benchmark
datasets.

In the main manuscript, we include five models that train
on samples with multiple input images, i.e. SparklesChat,
Otter, MMICL, EMU2-Chat, InternLM-XComposer2-VL.
We additionally report the performance of a recent video
LMM VideoLLaMA2 [3] on the benchmark datasets. As
shown in Tab. 5, our CaD-VI could outperform VideoL-
LaMA2 on all the benchmarks. The reason that the video
LMM does not perform well on benchmarks of CaD capa-
bilities could be that it is trained to understand a video as
a spatio-temporal entity instead of multiple individual im-
ages.

2.4. Error Bars

Training Data BISON SVO EQBEN COLA CaD-
QA

LLaVA mix +
CaD-LLaVAV 1

91.78%
±

1.02%

92.33%
±

0.57%

33.06%
±

0.96%

34.64%
±

2.09%

3.270
±

0.002%

Table 6. Average performance of the Phase-1 model CaD-
LLaVAV 1 on multiple runs of training.

We run the training of the Phase-1 model CaD-LLaVAV 1

multiple times and report the average performance with
standard deviation in Table 6. In most evaluation cases, the
standard deviation is within around 1%.

2.5. Ablation on Phase-2 Data Collection - OOD
CaD refinement

In Section 6 (main paper), we perform ablation the Phase-
2 data collection. Here we further explore applying our
phase-2 data collection on out-of-distribution (OOD) data
of Spot-the-diff (SpotDiff) dataset. The dataset contains
distant-view frame pairs with very subtle changes from
video-surveillance footage, which are OOD from most
LMM training data.



Training Data BISON SVO Difference
Spotting CaD-QA

A: LLaVA mix (L) 54.00% 46.80% 49.50% 2.54
B: L + SpotDiff orig. annot. 51.33% 52.27% 60.48% 2.51
C: L + SpotDiff our annot. (refined from orig. annot.) 54.00% 54.87% 66.67% 2.86

Table 7. Ablation of phase-2 data collection from 15K pairs of video frames in Spot-the-diff (SpotDiff). We use CaD-LLaVAV 1 to generate
CaD on SpotDiff by refining from the original human-annotated difference descriptions.

In Table 7, we train with SpotDiff original human-
annotated difference description (row B) and with our CaD-
LLaVAV 1 generated CaD summaries which is refined from
the original annotation (row C). We also evaluate on the
Difference-Spotting partition on SEED-Bench 2 [19] which
contains multi-choice questions based on frame pairs from
SpotDiff. In data collection and training for this experiment,
we only used the 15K training image pairs from SpotDiff
which are not included in the Difference-Spotting SEED
partition. The results in Table 7 verify that our phase-2 data
collection using CaD-LLaVAV 1 is also effective on OOD
data.

2.6. Qualitative Results of CaD Summaries

In Fig. 2 (main paper), we illustrate the pipeline of our
two-phase CaD-VI together with two examples of Phase-1
LLM-collected CaD summary and Phase-2 LMM-collected
CaD summary. Here in Fig. 1, we provide two additional
examples. Note that in Fig. 1(a), we only pass the captions
with the instruction prompt (in Fig. 11) into the LLM. In
Fig. 1(b), we pass the original annotation and both images
with the instruction prompt (in Fig. 12) into the Phase-1
model. In the main paper (Table 5), we demonstrate the
generated CaD summary without using the original annota-
tion also leads to effective results.

2.7. Qualitative Results on CaD-QA

In Fig. 2, Fig. 3 and Fig. 4, we show examples of Q&A pairs
in our CaD-QA, together with the predicted answers from
CaD-LLaVAV 2 model and the vanilla LLaVA 1.5 model.
We also report the LLM ratings for the predicted answers.
The vanilla LLaVA model has incorrect answers by either
mistakenly combining the contents in two images (Fig. 2(b),
the man is standing in front of the toilet while holding an
umbrella), omitting one of the images (Fig. 3(a), Fig. 4(a)),
attending to the incorrect image (Fig. 3(c)) or hallucinating
non-existent contents (Fig. 4(b)). The failure demonstrates
the lacking of capability of properly comparing two images.
At the same time, our CaD-InstV 2 manages to correctly dif-
ferentiate between the two images, attend to the correspond-
ing content asked in the question and draw a summary of
comparison.

2.8. Qualitative Results on BISON
In Fig. 5, we illustrate some examples of the binary image
selection task on BISON. We instruct the LMMs to give
both the selection answer and also the reasoning for the se-
lection. Here we compare the vanilla LLaVA 1.5 and our
CaD-LLaVAV 2. The LLaVA model, even if it captures the
relevant content in some cases, has confusion differentiat-
ing the two images (Fig. 5(a)(b)). For our CaD-LLaVAV 2,
the key reasoning that leads to the correct answer is always
covered in the structured difference summary.



Caption1: In this image there is a dining table on which there is a flower vase. There is a Champagne bottle. 
There is laptop. There is a headphone. There at the left side of the image there is a chair on which there is a 
bag. At the background of the image there is a wall and a window.

Caption2: In the image in the center we can see four persons were standing and they were smiling,which we 
can see on there faces. In front of them,there is a table. On table,we can see different types of books. In the 
center we can two persons were standing and the left lady is holding paper bag. In the background there is a 
brick wall,banner,belts,hanger,photo frames,toys,sign board,clothes,table and few other objects.

Commonalities: 
Both images include indoor scenes with man-made objects. There is a table in both images, and the tables are 
surrounded by other objects.

Differences:
1. Object types: Image 1 contains a dining table, flower vase, Champagne bottle, laptop, headphone, chair, 
bag, wall, and window. Image 2 contains four people, a table, books, paper bag, brick wall, banner, belts, 
hangers, photo frames, toys, sign board, clothes, and other objects.
2. Counting the objects: There are 1 dining table, 1 flower vase, 1 Champagne bottle, 1 laptop, 1 headphone, 
1 chair, 1 bag, 1 wall, and 1 window in Image 1. In Image 2, there are 4 people, 1 table, many books, 1 paper 
bag, 1 brick wall, 1 banner, several belts, hangers, photo frames, toys, 1 sign board, and multiple clothes.
3. Object actions: There are no specific actions involving objects in Image 1. In Image 2, four people are 
standing and smiling.
4. Object locations: In Image 1, the objects are placed on the dining table and the floor. In Image 2, the 
people are standing in front of the table, and the books are on the table.
5. Relative positions between objects: In Image 1, the chair is located to the left of the table. In Image 2, the 
paper bag is being held by one of the women, and the other objects are placed on the table or hung on the 
wall.

Image 1 Image 2

Image 1 Image 2

Original annotation: "The surfboard in the first image is a very colorful one, while the surfboard in the second 
image is a decorated one. In the first image, there is only one person holding the surfboard, while in the 
second image, there are three people holding the surfboard."

Commonalities: 
Both images contain a surfboard as the main object. The surfboard is being held by people in both images. 
The images also have a natural background, with the first image showing water, a mountain, and the sky, and 
the second image showing a building, trees, and a fence.

Differences:
1. The number of people holding the surfboard is different. In the first image, there is only one person, while 
in the second image, there are three people.
2. The background in the first image is more natural, with water, a mountain, and the sky, while the 
background in the second image is more urban, with a building, trees, and a fence.
3. The first image has a more open and spacious setting, while the second image has a more crowded and 
enclosed setting.
4. The first image has a more dynamic and active feel, with the person holding the surfboard, while the 
second image has a more static and posed feel, with the three people standing

:

CaD-
LLaVA

:

(a)

(b)

LLM

Figure 1. Examples of (a) Phase-1 LLM-collected CaD summary and (b) Phase-2 LMM-collected CaD summary



Image 1 Image 2

Q: What type of outdoor recreational activities are depicted in the two images?  

GT: In Image 1, a group of young people are engaged in a game of frisbee in a park, while in Image 2, an 
ongoing baseball game is shown, with players in uniforms and specialized equipment.

:

:

CaD-
LLaVA

LLaVA

The two images depict a baseball game in progress, with a batter swinging a baseball bat and a catcher 
wearing a baseball glove. The scene takes place on a baseball field, where multiple people are 
participating in the game. The presence of a baseball glove and the batter's swinging motion indicate that 
the game is in action, and the players are actively engaged in the sport. ongoing baseball game is shown, 
with players in uniforms and specialized equipment.

LLM rating: 3

The two images depict different outdoor recreational activities. Image 1 shows a group of people playing 
with a frisbee on a grassy field, while Image 2 features a baseball game with a batter, a catcher, and an 
umpire. The activities in the images are distinct, with one involving a casual, informal game of frisbee, and 
the other being a more structured and organized baseball game.

(a)

Image 1 Image 2

Q: What objects are present in Image 2 that are not in Image 1?

GT: In Image 2, there is a well-equipped shower, a bathtub, a commode, a mirror, a wooden shelf, and various 
items such as a green candle, air freshener spray, and silver faucet. These objects are not present in Image 1.

:

:

CaD-
LLaVA

LLaVA

In Image 2, there is a toilet visible in the bathroom, which is not present in Image 1. The man is standing 
in front of the toilet while holding an umbrella.

LLM rating: 2

In Image 2, there are several objects that are not present in Image 1, including a man, a mirror, a sink, a 
toilet, a shower, a window, a door, and a ceiling. The man is standing in the bathroom, and the mirror, sink, 
toilet, and shower are all located in the same room. The window and door are also present in the 
bathroom, and the ceiling is visible at the top of the image.

LLM rating: 5

LLM rating: 3

(b)

Image 1 Image 2

Q: Are there any humans visible in Image 2?

GT: No, there are no visible humans in Image 2, but the presence of a train driver is implied.

:

:

CaD-
LLaVA

LLaVA

Yes, there is a man visible in Image 2, standing next to the train.

LLM rating: 0

No, there are no humans visible in Image 2.

LLM rating: 4

(c)

Figure 2. Examples of Q&A pairs in CaD-QA together with LMM predicted answers and the corresponding LLM evaluation rating for the
prediction (Red and green texts denote incorrect and correct description).



Image 1 Image 2

Q: What kind of mood do the two images convey?

GT: Image 1 conveys a sense of dynamism and energy in a modern urban setting. Image 2 evokes a feeling of 
tranquility and curiosity in a traditional, mysterious setting.

:

:

CaD-
LLaVA

LLaVA

The two images convey a calm and peaceful mood. In the first image, a cat is sitting in a window, looking 
out, which suggests a sense of relaxation and contentment. The second image shows a bus parked on the 
side of the road, with people waiting at a bus stop. The presence of the bus and the people waiting for it 
indicate a sense of order and routine, which can also contribute to a calm atmosphere. The combination of 
these two images creates a serene and tranquil scene, reflecting the everyday life of people and animals in 
a quiet, urban environment.

LLM rating: 2

The two images convey different moods. Image 1 has a lively and active mood, with a bus, people, a pole, a 
dustbin, trees, buildings, and a cloudy sky. The presence of a bus and people suggests movement and 
activity. Image 2, on the other hand, has a calm and serene mood, with a cat sitting on a window sill and a 
wall in the background. The cat's presence and the stillness of the scene create a sense of tranquility.

LLM rating: 4

Image 1 Image 2

Q: What is the central figure in each image?

GT: In Image 1, the central figures are several horses and their riders, engaged in a polo game. In Image 2, 
the central figure is a man holding a mountain bike.

:

:

CaD-
LLaVA

LLaVA

The central figure in each image is a man riding a bicycle.

LLM rating: 2

In Image 1, the central figure is a man riding a horse. In Image 2, the central figure is a man riding a 
bicycle.

LLM rating: 4

Image 1 Image 2

Q: What is the atmosphere like in Image 1?

GT: The atmosphere in Image 1 is lively and conveys a sense of joy and adventure for the passengers aboard 
the train.

:

:

CaD-
LLaVA

LLaVA

The atmosphere in Image 1 is lively and social, with a group of people walking down a dirt road or path, 
enjoying each other's company.

LLM rating: 3

The atmosphere in Image 1 is lively and engaging, as there are people sitting on a train and taking 
pictures of the scenery. The presence of a train and the outdoor setting suggest a sense of adventure and 
excitement, as the passengers are enjoying their journey and capturing memories of the beautiful 
surroundings.

LLM rating: 5

(a)

(b)

(c)

Figure 3. Examples of Q&A pairs in CaD-QA together with LMM predicted answers and the corresponding LLM evaluation rating for the
prediction (Red and green texts denote incorrect and correct description).



Image 1 Image 2

Q: Are the settings in the two images similar or different?

GT: The settings in the two images are different. Image 1 is set in a train station during winter, while Image 2 
is at a beach during a sunny day.

:

:

CaD-
LLaVA

LLaVA

The settings in the two images are similar, as both depict men sitting on a bench or a wooden chair near a 
beach.

LLM rating: 0

The settings in the two images are different. Image 1 features a train station with a train on the tracks, 
people walking on the platform, and buildings in the background. Image 2, on the other hand, shows two 
men sitting on a bench under a colorful umbrella, with a body of water and boats in the background.

LLM rating: 5

Image 1 Image 2

Q: Are there any plants or natural elements in the images?

GT: No, neither Image 1 nor Image 2 contains any plants or natural elements.

:

:

CaD-
LLaVA

LLaVA

Yes, there is a plant in the image, which is placed on the table.

LLM rating: 0

No, there are no plants or natural elements in the images. Both images are indoor scenes with man-made 
objects.

LLM rating: 5

Image 1 Image 2

Q: What objects are present in each image?

GT:  Image 1 contains a wooden and metallic bench, a cellphone, and some graffiti, while Image 2 features a 
blue metal plow, horses, and rocky soil.

:

:

CaD-
LLaVA

LLaVA

In the first image, there is a man and a horse, while in the second image, there are two horses and a man.

LLM rating: 1

In Image 1, there is a woman sitting on a bench, and in Image 2, there are two horses, a cart, and three 
people.

LLM rating: 2

(a)

(b)

(c)

Figure 4. Examples of Q&A pairs in CaD-QA together with LMM predicted answers and the corresponding LLM evaluation rating for the
prediction (Red and green texts denote incorrect and correct description).



Image 1 Image 2

Text query: A large desk has a bookshelf above it.

Image 1.
The image with the bookshelf above the desk is more suitable for the caption "A large desk has a 
bookshelf above it." because it clearly shows a bookshelf above the desk, which is not visible in the other 
image. In the first image, the bookshelf is located above the desk, while in the second image, the 
bookshelf is not visible. The first image also has a laptop and a cell phone on the desk, which are not 
present in the second image

Image 2.
Reasons:
* Image 2 contains a bookshelf with books and other items, while Image 1 does not have a bookshelf.
* Image 2 has a desk with a laptop, monitor, and other items, while Image 1 has a desk with a laptop, 
monitor, and other items.
* Image 2 has a wall with posters and a board, while Image 1 does not have a wall with posters or a board.
* Image 2 has a more cluttered and detailed scene compared to Image 1.

:

:

Image 1 Image 2

Text query: A group of men preparing to fly a kite being filmed by another man.

Image 1.
The image with the man holding a camera captures the essence of the scene better. In this image, there is 
a man holding a camera, and another man is holding a kite. The presence of the camera indicates that the 
scene is being filmed, which is the main focus of the image. In contrast, the image with the man holding a 
camera and two other men standing in the grass does not clearly convey the act of filming. The presence of 
the kite in the image also adds to the visual interest and context of the scene.

Image 2.
Reasons:
1. The number of people: Image 1 has two people, while Image 2 has four people.
2. Actions: In Image 1, one person is flying a kite, and the other is standing. In Image 2, all three people are 
standing, and one person is holding a camera.

:

:

Image 1 Image 2

Text query: A man in a white sweater sitting at a table eating a whole pizza pie.

Image 1.
The image with the man in a white sweater sitting at a table eating a whole pizza pie is more suitable for 
the caption because it clearly shows the man eating a pizza and wearing a white sweater. The other image, 
B, shows a man cutting a pizza with a knife and fork, but it does not provide enough context to determine if 
he is wearing a white sweater or not. The image A provides a more accurate representation of the man 
eating a pizza and wearing a white sweater, which is the main focus of the caption.

Image 2.
Reasons:
1. The man in Image 2 is sitting at a table and eating a whole pizza pie, while the man in Image 1 is sitting 
at a table and holding a glass of beer.
2. The man in Image 2 is wearing a white sweater, while the man in Image 1 is not wearing a sweater.
3. The man in Image 2 is cutting the pizza with a knife, while the man in Image 1 is not cutting anything.

:

:

CaD-
LLaVA

LLaVA

LLaVA

LLaVA

CaD-
LLaVA

CaD-
LLaVA

(a)

(b)

(c)

Figure 5. Examples of predictions of the binary image selection task on BISON (red and green texts denote incorrect and correct predic-
tions). We instruct the LMMs to, besides the selection, also give a reasoning for the answer.



3. Dataset Statistics

3.1. Generated Data Statistics

CaD-InstV 1 and CaD-InstV 2. In CaD-InstV 1, we col-
lected structured summaries of CaD for 278K image pairs,
with an average length of 157 words (40 for commonali-
ties and 117 for differences). In CaD-InstV 2, we collected
summaries of CaD for 71K images pairs used in Scene-
Difference [21], with an average length of 156 words (28 for
commonalities and 128 for differences). We demonstrate
the distribution of CaD summary length (number of words)
in CaD-InstV 1 (Fig. 6(a)) and in CaD-InstV 2 (Fig. 6(b)).

In Fig. 7, we also illustrate the cloud of words covered in
the CaD summaries in CaD-InstV 1 (Fig. 7(a)) and in CaD-
InstV 2 (Fig. 7(b)).

In the main paper, we mentioned that the collected sum-
maries are structured according to approximate 6 axes of
characteristics: object types, attributes, counting, actions,
locations and relative positions. Note that the characteris-
tics appear unevenly on a case-to-case basis based on the
LLM decision on individual samples. In Fig. 3(a)(main pa-
per), we illustrate the distribution of these sample-specific
characteristics in a Sunburst chart. Here in Fig. 8, we also
illustrate the distribution of these characteristics (e.g. object
types, action of people, surrounding environments, etc.) in
CaD summaries in the Phase-1 data collection CaD-InstV 1.
The structured differences are summarized in terms of these
characteristics (see Fig. 1(a) for an example of structured
difference summary in terms of several characteristics). The
visual instruction tuning guides the model to compare im-
ages in terms of these detailed characteristics.

In the main paper, we introduced that we collect 278K
image pairs with different levels of similarity between their
captions. We measure the similarity between two captions
by counting the number of overlapping nouns in the cor-
responding captions. Here we show the distribution of
the number of overlapping nouns in Fig. 9(a). We see
that we cover image pairs with different levels of caption-
caption similarity. Furthermore, we use the CLIP ViT-B/32
model [30] to compute the similarity scores between the two
images in each pair and report the distribution in Fig. 9(b).
We verify that image pairs of diverse similarity levels are
covered in our Phase-1 data collection CaD-InstV 1.

CaD-QA. Our CaD-QA benchmark contains 7.5K open-
ended questions with answers. Here we show the distri-
bution of questions types (first 5 words) and answer types
(first 3 words) in Sunburst charts in Fig. 10. There are di-
verse question categories covered such as Yes/No questions,
What questions on scene characteristics such as objects, at-
tributes and setting, and also requests to describe specific
characteristics in details.

3.2. Statistics of External Evaluation Datasets
We evaluate on several external VQA benchmarks of
closed-ended and open-ended questions. Here we give a
brief introduction on the contents and statistics.
BISON is a dataset for the binary image selection task [12].
There are 150 samples in the evaluation benchmark, each
sample consisting of a pair of two visually similar images
and a query caption. Only one image correctly matches with
the query caption. It measures the ability of the LMMs to
relate fine-grained text content in the caption to visual con-
tent in the images.
SVO Probes is a benchmark designed to probe for sub-
ject, verb and object understanding in vision-language mod-
els [11]. In the benchmark, each sample consists of a pair
of two images and a query sentence, where only one image
correctly matches with the query sentence. The negative
image differs from the positive image with regard to either
the subject, the verb or the object. There are 36.8K samples
in the dataset. For efficient evaluation, we randomly select
1500 samples that can be divided into 3 partitions subject,
verb and object where each partition has 500 samples with
the image pair contradiction in either subject, verb or object.
EQBEN is a benchmark that focuses on visual minimal
change between two images [38]. Each sample in the
benchmark consists of a pair of two images with subtle vi-
sual changes and two corresponding captions. The dataset
is comprised of frames from natural video datasets such as
YouCook2 [46], Action Genome [14] and GEBC [39], as
well as sythetic image pairs with subtle differences gener-
ated by the photo-realistic scene generator Kubric [10] and
the diffusion model Stable-Diffusion [32]. We employ an
EQBEN subset1 which is released by the authors in [38] for
evaluating the performance of LMMs specifically. The sub-
set consists of 120 samples, comprised of frame pairs from
Action Genome and GEBC, image pairs with changes in at-
tributes, count and location generated by Kubric, and image
pairs with style change generated by Stable-Diffusion. For
each sample, we perform the binary image selection task
twice, feeding one of the descriptions for image selection at
a time. The sample is considered positively answered only
when both selection tasks are correctly solved.
COLA is a benchmark for evaluating the capabilities of
vision-language models on representing simple composi-
tions by combing objects with their attributes [31]. Each
sample in the benchmark consists of two images with two
corresponding captions. The two images have attributes and
objects that are swapped in the captions, e.g. large tree to
the right of little short green tree, and tall green tree to the

1https : / / entuedu - my . sharepoint . com/ :
u : /g / personal / tan317 _ e _ ntu _ edu _ sg /
ETkpKSsmun1MpBw7FqfUUS8BwTX2gKkTQkDFsfOGCw -
9yA?e=KGtpg0

https://entuedu-my.sharepoint.com/:u:/g/personal/tan317_e_ntu_edu_sg/ETkpKSsmun1MpBw7FqfUUS8BwTX2gKkTQkDFsfOGCw-9yA?e=KGtpg0
https://entuedu-my.sharepoint.com/:u:/g/personal/tan317_e_ntu_edu_sg/ETkpKSsmun1MpBw7FqfUUS8BwTX2gKkTQkDFsfOGCw-9yA?e=KGtpg0
https://entuedu-my.sharepoint.com/:u:/g/personal/tan317_e_ntu_edu_sg/ETkpKSsmun1MpBw7FqfUUS8BwTX2gKkTQkDFsfOGCw-9yA?e=KGtpg0
https://entuedu-my.sharepoint.com/:u:/g/personal/tan317_e_ntu_edu_sg/ETkpKSsmun1MpBw7FqfUUS8BwTX2gKkTQkDFsfOGCw-9yA?e=KGtpg0


(a) CaD-InsV1 (b) CaD-InsV2

Figure 6. Distribution of length of CaD summaries (in terms of number of words) in (a) CaD-InstV 1 and (b) CaD-InstV 2

(a) CaD-InsV1 (b) CaD-InsV2

Figure 7. Word clouds of CaD summaries in (a) CaD-InstV 1 and (b) CaD-InstV 2

right of large tall green tree. We employ the partition of
multi-object setting in the benchmark which consists of 210
image pairs and captions. Similar to evaluation on EQBEN,
we perform the binary image selection task twice for each
sample.

NLVR2 is a benchmark for evaluation of the visual rea-
soning with natural language task which aesses the abil-
ity of LMMs to predict whether a sentence is true about
a pair of images [33]. The task focuses on understanding of
compositionalities in terms of relations, comparisons and
counting. We use the subset of 150 samples provided in
SparklesChat [13] for a fair comparison.

SEED-Bench is an evaluation benchmark on comprehen-
sive vision-language understanding, consisting of 19K mul-
tiple choice questions [20]. The are two major categories in
the benchmark: SEED-Image with 14K samples and SEED-
Video with 5K samples. SEED-Image consists of 9 dimen-
sions: scene understanding, instance identity, instance at-
tributes, instance location, instance counting, spatial rela-

tion, visual reasoning and text understanding. All samples
contain only a single input image. SEED-Video consists
of 3 dimensions: action recognition, action prediction and
procedure understanding. The videos are from Something-
Something-v2 [9], EPIC-Kitchen [6] and Breakfast [17].

4. Implementation Details

4.1. Baselines

SparklesChat [13] is finetuned from the first-stage pre-
trained model of MiniGPT4 [47]. The model is fine-
tuned with their collected multi-image dialogue data.
SparklesChat follows the architecture of MiniGPT4 and
uses Vicuna 7B [4], EVA-CLIP ViT-G/14 [7] with a Q-
Former from BLIP-2 [23]. We use the model weights and
instruction templates available at https://github.
com/HYPJUDY/Sparkles.

Otter [22] is finetuned from the OpenFlamingo
model [1] with the collected multimodal in-

https://github.com/HYPJUDY/Sparkles
https://github.com/HYPJUDY/Sparkles
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Figure 8. Distribution of sample-specific characteristics (e.g. object types, action of people, surrounding environments, etc.) in CaD
summaries in CaD-InstV 1. The distribution of these sample-specific characteristics is also shown in a Sunburst chart in Fig. 3(a)(main
paper).

context instruction-response data in MIMIC-IT [21].
We use their most recent open-sourced version

Otter-Image-LLaMA7B-LA-InContext available at
https://huggingface.co/luodian/OTTER-

https://huggingface.co/luodian/OTTER-Image-LLaMA7B-LA-InContext


(b) Image-image similarity(a) Number of overlapping nouns 
between captions in an image pair

Figure 9. Distribution of (a) number of overlapping nouns between captions in an image pair and (b) image-image similarities in the 278K
image pairs in CaD-InstV 1
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(a) Questions in CaD-QA (b) Answers in CaD-QA

Figure 10. Distribution of (a) questions (first 5 words) and (b) answers (first 3 words) in the evaluation benchmark CaD-QA.

Image-LLaMA7B-LA-InContext.
MMICL [43] is based on the InstructBLIP model [5].
The model is finetuned their own collected multimodal in-
context learning datast consisting of interleaved text-image
inputs, inter-related multiple image inputs and multimodal
in-context learning inputs. We evaluate with their model
of the largest scale MMICL-InstructBLIP-T5-XXL, avail-
able at https://huggingface.co/BleachNick/
MMICL-Instructblip-T5-xxl.
EMU2-Chat [35] is a generative multimodal model trained
on large-scale multimodal sequences. The model con-
sists of pretrained EVA-02-CLIP-E-plus [34] and LLaMA-
33B [37]. The model weights and inference code are avail-
able at https://huggingface.co/BAAI/Emu2-
Chat.

InternLM-XComposer2-VL [41] consists of CLIP
ViT-L [30] and InternLM2-7B [36]. The model weights
of the InternLM-XComposer2-VL-7B and inference
code are available at https://huggingface.co/
internlm/internlm-xcomposer2-vl-7b.

LLaVA 1.5 [25] is an improved version from LLaVA [26]
with CLIP-ViT-L-336px [30] as the visual backbone and
Vicuna 1.5 [44] as the LLM. Our visual instruction tun-
ing is performed using the open-sourced code of LLaVA
1.5. We train on the first-stage pretrained weights of
LLaVA 1.5 via LoRA finetuning. We evaluate both LLaVA
1.5 7B lora and LLaVA 1.5 13B lora as baselines. The
models are available at https://huggingface.co/
liuhaotian/llava-v1.5-7b-lora and https:
//huggingface.co/liuhaotian/llava-v1.5-

https://huggingface.co/luodian/OTTER-Image-LLaMA7B-LA-InContext
https://huggingface.co/BleachNick/MMICL-Instructblip-T5-xxl
https://huggingface.co/BleachNick/MMICL-Instructblip-T5-xxl
https://huggingface.co/BAAI/Emu2-Chat
https://huggingface.co/BAAI/Emu2-Chat
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https://huggingface.co/internlm/internlm-xcomposer2-vl-7b
https://huggingface.co/liuhaotian/llava-v1.5-7b-lora
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13b-lora.
LLaVA 1.6 [27] is an improved version from LLaVA
1.5 with increased input image resolution and improved
mixture of instruction tuning data. The 7B and 13B
versions are avaible on Huggingface at https://
huggingface.co/liuhaotian/llava-v1.6-
vicuna- 7b and https://huggingface.co/
liuhaotian/llava-v1.6-vicuna-13b. However,
the training code is not yet available.

4.2. Implementation Details

Data Collection. In Phase-1, we leverage the Mixtral 8x7B
Instruct v0.1 model2 with 8-bit inference for data genera-
tion. We set the batch size to 16 and max new token to
750. The prompt for the task of LLM-based CaD summary
is given in Fig. 11. The generation with batch 16 fits to an
A100 80G GPU.

In Phase-2, we leverage the Phase-1 model CaD-
LLaVAV 1 13B model to generate CaD summary on addi-
tional image pairs. The temporature, max new tokens and
number of beams are set to 0, 256 and 1. The prompt for
the task of LMM-based CaD summary is given in Fig. 12.

For collecting open-ended QAs in CaD-QA, we first use
the LMM to generate the CaD summaries based on the im-
age captions (see Fig. 11). Then we prompt the LLM with
both the image captions and the CaD summary, instruct-
ing it to generate a multi-turn conversation with several
rounds of Q&A. We also provide some in-context samples
to demonstrate the desired layout. The prompt for the task
of generating Q&A pairs based on both image captions and
the CaD summary is illustrated in Fig. 13.
Training. We perform visual instruction tuning following
the configuration in LLaVA 1.5. We set the batch size to
128 and train for one epoch. The learning rate for LLM with
LoRA and for the projector are set to 1×10−4 and 2×10−5

correspondingly. The LoRA rank and alpha values are set to
128 and 256. The training experiments are run on 4×A100
80G GPUs.
Inference. For VQA inference, the temperature, max new
tokens and number of beams are set to 0, 256 and 1.
LLM-assisted Evaluation We leverage the Mixtral 8×7B
model for LLM-assisted evaluation on open-ended ques-
tions. We feed the question, correct answer and the pre-
dicted answer into the LLM and instruct it to provide a rat-
ing between 0 and 5. The prompt for generating the evalua-
tion rating is given in Fig. 14.

2Huggingface source: https : / / huggingface . co /
mistralai/Mixtral-8x7B-Instruct-v0.1
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System prompt: 
You are an AI visual assistant and you are seeing two images. The two images are provided with two 
captions, each describing the content of an image. Your task is to summarize the commonalities and 
differences between the two images. Answer as you are seeing the images. Summarize the commonalities 
and differences about the visual content of the two images, including the object types, object attributes, 
counting the objects, object actions, object locations, relative positions between objects, etc.

User prompt: 
Please summarize the commonalities and differences between the following two images:
Image 1:<caption1>
Image 2:<caption2>
Commonalities: 

Figure 11. Prompt for the task of Phase-1 LLM-based CaD summary.

System prompt:
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, 
and polite answers to the user's questions.

User prompt:
Image 1: <image>
Image 2: <image>
Here are some context of the difference between the two images:
<description>
Based on the two images and the context, summarize the commonalities and differences about the visual 
content of the two images, including the object types, object attributes, counting the objects, object 
actions, object locations, relative positions between objects, etc.

Figure 12. Prompt for the task of Phase-2 LMM-based CaD summary.



System prompt:
You are an AI visual assistant, and you are seeing two images. The two images are provided with two 
captions, each describing the content of an image. Additionally, you are provided with a summary of the 
commonalities and differences between the two images. Design a conversation between you and a person 
asking about the two images based on the commonalities and differences between the two images. The 
answers should be in a tone that a visual AI assistant is seeing the two images and answering the 
question. Ask diverse questions and give corresponding answers. Include questions about the visual 
content of the two images, including the object types, object attributes, counting the objects, object 
actions, object locations, relative positions between objects, etc. 

User prompt:
Please design a conversation with several rounds of questions and answers, where a person asks about 
the two images based on the commonalities and differences between the two images, and you answer. 

Image 1: In this picture we can see two women are taking picture, side there is a glass and bottle are 
placed on the table, behind we can see some people are sitting on the chairs.
Image 2: In this image, we can see some buildings. There is a bridge on the right side of the image. There 
is a person and bus in the middle of the image. There is a wall beside the road. There are divider cones at 
the bottom of the image. At the top of the image, we can see the sky.
Summary: Commonalities: The two images have the presence of people and man-made structures. In both 
images, the people are engaged in different activities - taking a picture in Image 1 and standing in Image 
2. The man-made structures include a table with objects in Image 1 and buildings, a bridge, a wall, and
divider cones in Image 2.
Differences:
1. Scene: Image 1 is set in an indoor or semi-enclosed space, such as a café or restaurant, while Image 2 
is set outdoors, in a cityscape or urban environment.
2. Objects: Image 1 contains objects like a glass, bottle, and chairs, which are not present in Image 2. On 
the other hand, Image 2 has elements like a bridge, wall, and divider cones, which are not in Image 1.
3. People: In Image 1, there are two women taking a picture, while in Image 2, there is a single person 
standing near a bus.
4. Actions: The people in Image 1 are taking a picture, while the person in Image 2 is not engaged in any 
specific action.
5. Locations: The scene in Image 1 is more confined, with a table and chairs, while Image 2 has a wider 
view, including a road, buildings, and the sky.
6. Relative positions between objects: In Image 1, objects are placed on a table, while in Image 2, objects 
are positioned along a road or street.
Question: Are there people in both images?
Answer: Yes, there are people in both images.
Question: what is the difference in the scene of the two images?
Answer: The scene in Image 1 is set in an indoor or semi-enclosed space, such as a café or restaurant, 
while Image 2 is set outdoors, in a cityscape or urban environment.
Question: What objects are present in Image 1 but not in Image 2?
Answer: Image 1 contains objects like a glass, bottle, and chairs, which are not present in Image 2.
Question: What objects are present in Image 2 but not in Image 1?
Answer: Image 2 has elements like a bridge, wall, and divider cones, which are not in Image 1.
Question: What is the difference between people in the two images?
Answer: In Image 1, In Image 1, there are two women taking a picture, while in Image 2, there is a single 
person standing near a bus.
Question: What are the people doing in the two images?
Answer: The people in Image 1 are taking a picture, while the person in Image 2 is not engaged in any 
specific action.
Question: What is the difference in the locations of the two images?
Answer: The scene in Image 1 is more confined, with a table and chairs, while Image 2 has a wider view, 
including a road, buildings, and the sky.
Question: What is the difference in the relative positions between objects in the two images?
Answer: In Image 1, objects are placed on a table, while in Image 2, objects are positioned along a road or 
street.

Image 1: <caption1>
Image 2: <caption2>
Summary: <summary>
Question:

Figure 13. Prompt for the task of generating Q&A pairs based on both image captions and the CaD summary.



System prompt:
You are an intelligent chatbot designed for evaluating the correctness of generative outputs for question-
answer pairs. Your task is to compare the predicted answer with the correct answer and determine if they 
match meaningfully. Here's how you can accomplish the task:

##INSTRUCTIONS:
- Focus on the meaningful match between the predicted answer and the correct answer.
- Consider synonyms or paraphrases as valid matches.
- Evaluate the correctness of the prediction compared to the answer.

User prompt:
Please evaluate the following question-answer pair:
Question: <question>
Correct Answer: <answer>
Predicted Answer: <prediction>
Evaluate if the predicted answer is correct with yes/no and assign a correctness score between 0 and 5, 
where 0 indicates incorrect answer, and 5 signifies the highest meaningful match. Please generate the 
response in the form of a Python dictionary string with keys 'pred' and 'score', where value of 'pred' is a 
string of 'yes' or 'no' and value of 'score' is in INTEGER, not STRING. DO NOT PROVIDE ANY OTHER 
OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. For example, your response 
should look like this: {'pred': 'no', 'score': 0}.

Figure 14. Prompt for the LLM-assisted evaluation.



5. List of Assets

Our image sources and annotations are obtained from public
datasets. We release our data in accordance to the source
data licenses.

Here is a list of image sources:
• Open Images v6 [18] (https : / / storage .
googleapis . com / openimages / web /
download _ v6 . html): The images are under
Creative Commons Attribution (CC BY) 2.0 license.

• COCO 2017 [2, 24] (https://cocodataset.org/
#download): The images are under a Creative Com-
mons Attribution 4.0 license.

• Flicker30K [40] (https : / / shannon . cs .
illinois . edu / DenotationGraph/): The
images are the property of SmugMug or its third party
licensors and are protected by United States and in-
ternational intellectual property laws. The images are
provided for researchers and educators who wish to
use the dataset for non-commercial research and/or
educational purposes.

• ADE20K [45] (https://groups.csail.mit.
edu/vision/datasets/ADE20K/index.html#
Download): The images belong to MIT CSAIL and are
licensed under a Creative Common BSD-3 License.

• Visual Genome [16] (https : / / homes . cs .
washington .edu / ˜ranjay /visualgenome /
api.html): The images are under a Creative Commons
Attribution 4.0 license.

Here is a list of image annotation sources:
• Localized narratives [29] (https : / / google .
github.io/localized- narratives/): The
annotations are released under a Creative Common
Attribution (CC BY) 4.0 license.

• MIMIC-IT [21] (https://huggingface.co/
datasets/pufanyi/MIMICIT): The annotations
are released under an MIT license.

• SVIT [42] (https : / / huggingface . co /
datasets / BAAI / SVIT): The annotations are
licensed under a Creative Commons Attribution 4.0 li-
cense. It should abide by the policy of OpenAI (https:
//openai.com/policies/terms- of- use).
The use of original images and annotations from Visual
Genome and MS-COCO should comply with the original
licenses.

Here is a list of implementation sources or model weights:
• LLaVA [25, 26] (https : / / github . com /
haotian - liu / LLaVA): The code is released
under an Apache-2.0 license. The project utilizes certain
datasets and checkpoints that are subject to their respec-
tive original licenses, including but not limited to the
OpenAI Terms of Use3 for the dataset and the specific

3https://openai.com/policies/eu-terms-of-use/

licenses for base language models for checkpoints trained
using the dataset (e.g. LLaMA community license4 for
LLaMA-2 and Vicuna-v1.5).

• Mixtral 8×7B model [15] (https://huggingface.
co/mistralai/Mixtral- 8x7B- v0.1): The
model is released under an Apache-2.0 license. Usage
is subject to the term of use for Mistral products and ser-
vices5.

4https://ai.meta.com/llama/license/
5https://mistral.ai/terms/#terms-of-use

https://storage.googleapis.com/openimages/web/download_v6.html
https://storage.googleapis.com/openimages/web/download_v6.html
https://storage.googleapis.com/openimages/web/download_v6.html
https://cocodataset.org/#download
https://cocodataset.org/#download
https://shannon.cs.illinois.edu/DenotationGraph/
https://shannon.cs.illinois.edu/DenotationGraph/
https://groups.csail.mit.edu/vision/datasets/ADE20K/index.html#Download
https://groups.csail.mit.edu/vision/datasets/ADE20K/index.html#Download
https://groups.csail.mit.edu/vision/datasets/ADE20K/index.html#Download
https://homes.cs.washington.edu/~ranjay/visualgenome/api.html
https://homes.cs.washington.edu/~ranjay/visualgenome/api.html
https://homes.cs.washington.edu/~ranjay/visualgenome/api.html
https://google.github.io/localized-narratives/
https://google.github.io/localized-narratives/
https://huggingface.co/datasets/pufanyi/MIMICIT
https://huggingface.co/datasets/pufanyi/MIMICIT
https://huggingface.co/datasets/BAAI/SVIT
https://huggingface.co/datasets/BAAI/SVIT
https://openai.com/policies/terms-of-use
https://openai.com/policies/terms-of-use
https://github.com/haotian-liu/LLaVA
https://github.com/haotian-liu/LLaVA
https://openai.com/policies/eu-terms-of-use/
https://huggingface.co/mistralai/Mixtral-8x7B-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-v0.1
https://ai.meta.com/llama/license/
https://mistral.ai/terms/#terms-of-use
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