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Supplementary Material

A. Experimental Details

For our experiments, we use the ImageNet dataset [3] and
study the popular ResNet-50 architecture [9]. We use pre-
trained model weights from PyTorch [19]. Our layer of
interest l is the last convolutional layer – earlier layers could
have been used as well; however, we chose the last one for
simplicity and because we suspect that later layers encoding
semantically more meaningful concepts are easier to disen-
tangle with our proposed approach. We consider a channel
c as relevant for class t if the condition in Ineq. (2) with
⌧ = 0.03 and p = 0.75 is satisfied. We consider a channel
affected by polysemanticity if the cosine similarity in Theo-
rem 3.1 is below � = 0.5. The values of ⌧ , �, and p control
at what point a channel is considered relevant for a class and
at what point it is affected by polysemanticity. Therefore,
they are highly application-specific and can be selected more
or less conservatively depending on whether the application
requires higher recall or higher precision (in this work, ⌧ , �,
and p are handpicked).

More specifically, the hyperparameter � controls the max-
imum ARV cosine similarity for which a channel relevant
for two classes is considered to be polysemantic. We aim
to choose � to include as many channels as possible while
maximizing the chance that the included channels are truly
polysemantic and not activating for a shared concept, such
as for different dog species. To find an appropriate value for
�, we take all class pairs for which the same channel c is rel-
evant (see Ineq. (2)) and plot the WordNet [4] path similarity
for the two class labels over their ARV cosine similarity in
Fig. 4. Intuitively, similar classes that share concepts, such as
different dog species, have a high WordNet similarity while
semantically different classes have a low similarity. Thus,
we can use the WordNet similarity as a proxy for semantic
similarity, which we use as a proxy for visual similarity [4].
For � = 0.5, almost all the relevant class pairs have a very
low WordNet similarity, and thus, we continue our analysis
with class pairs that have an ARV cosine similarity below
that value.

The factor ⇢ controlling when a channel i in l�1 is mainly
relevant for the concept of t2, respectively t1, in Ineq. (5)
is selected automatically. To this end, we take all training
images from t1 and t2 and measure the activations of the
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Figure 4. WordNet similarity of the two classes for which a channel

is relevant over their ARV cosine similarity (see Definition 3.1).
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Qualitative analysis. To visualize the highest activating
image patches in Fig. 1 from two classes, we select the 16
highest activating images and extract the highest activating
patches. We then choose six patches such that they are
equally distributed among the two classes (if there are images
from both classes within the 16 patches). This allows us to
consider the top 16 patches, without overfilling the plot.

Quantitative analysis. For our quantitative analysis, the
relative activation is meaningless for images in which the
concept encoded in the channel of interest is absent. Thus,
we only include images where the channel of interest has a
relative attribution above ⌧ (see Ineq. (2)). With the chosen
hyperparameters, this condition applies to at least 75% of
the images, representing a sufficiently large number to draw
meaningful conclusions.
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