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Abstract

The development of artificial intelligence systems is tran-
sitioning from creating static, task-specific models to dy-
namic, agent-based systems capable of performing well in
a wide range of applications. We propose an Interac-
tive Agent Foundation Model that uses a novel multi-task
agent training paradigm for training AI agents across a
wide range of domains, datasets, and tasks. Our train-
ing paradigm unifies diverse pre-training strategies, includ-
ing visual masked auto-encoders, language modeling, and
imitation learning, enabling a versatile and adaptable AI
framework. We demonstrate the performance of our frame-
work across three separate domains—Robotics, Gaming AI,
and Healthcare. Our model demonstrates its ability to gen-
erate meaningful and contextually relevant outputs in each
area. The strength of our approach lies in its generality,
leveraging a variety of data sources such as robotics se-
quences, gameplay data, large-scale video datasets, and
textual information for effective multimodal and multi-task
learning. Our approach provides a promising avenue for
developing generalist, action-taking, multimodal systems.

1. Introduction
The development of AI systems that can not only gather

useful sensory information, but also interact with their en-

vironments in meaningful ways has been a long-time goal

for AI researchers. One key advantage of developing gen-

eralist AI systems is that of training a single neural model

across many tasks and data modalities, an approach which

is highly scalable via data, compute, and model parameters

[49]. With recent significant advances surrounding general-

purpose foundation models [5], the AI community has a

new set of tools for developing generalist, action-taking AI

systems en route to artificial general intelligence. Despite

their impressive results across various AI benchmarks, large
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foundation models frequently hallucinate the presence of

objects and actions in scenes and infer factually incorrect

information [45, 48]. We posit that one of the key reasons

why these foundation models hallucinate is due to their lack

of grounding in the environments in which they are trained

(e.g., large-scale internet data instead of physical or vir-

tual environments). Furthermore, the dominant approach

for building multimodal systems is to leverage frozen pre-

trained foundation models for each modality and to train

smaller layers that allow for cross-modal information pass-

ing [2, 11, 32, 34, 37]. Since the visual- and language-

specific submodules are not tuned during multimodal train-

ing, any hallucination errors in the submodules will likely

be present in the resulting multimodal system. Additionally,

lack of cross-modal pre-training could make grounding in-

formation across modalities challenging.

Towards such a generalist model that is grounded and

pre-trained within physical or virtual environments, we pro-

pose a unified pre-training framework for handling text, vi-

sual data, and/or actions as input. We treat each input type

as separate tokens and pre-train a system to predict masked

tokens across all three modalities. Our approach lever-

aeges pre-trained language models and pre-trained visual-

language models to effectively initialize our model with

pre-trained submodules, which we jointly train in our uni-

fied framework. We call our approach and resulting model

an Interactive Agent Foundation Model, due to its ability

to interact with humans and the environment across a wide

range of domains and tasks.

In this paper, we show that a 277M parameter model

that is jointly pre-trained across 13.4 M video frames from

several distinct domains and data sources can be effec-

tively adapted for interactive multi-modal settings using

text, video, images, dialogue, captioning, visual question

answering, and embodied actions across five disparate en-

vironments. In order to effectively evaluate the broad range

of capabilities and generalization abilities of our model, we

show results across three distinct domains: robotics, gam-

ing, and healthcare. Despite using domain-specific visual

inputs, text descriptions, and action-spaces, our model is
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effectively able to generalize across all three domains. Im-

portantly, we also find that our agent pre-training frame-

work produces effective visual encoders that can generalize

well in novel domains. To facilitate research in this area, we

release our training code at the following URL.

2. Agent Foundation Model

Our proposed framework is shown in Figure 1. By com-

bining visual perception, action understanding, and linguis-

tic reasoning skills, our model offers the potential to en-

dow robots with a more intuitive understanding of their sur-

roundings and better contextual interactions. Our frame-

work focuses on developing a unified pretraining method-

ology that can incorporate data sources containing only ac-

tions, agent states, images, videos, and language data or any

combination thereof. Due to the flexibility of data inputs,

our model benefits from increased adaptability across a va-

riety of downstream tasks (e.g., video understanding, tem-

poral reasoning, action prediction, interaction with human

feedback, etc.). Finally, by using a relatively small trans-

former decoder (only 125M parameters) and a joint image

and video encoder, we reduce our overall model size which

can be useful for edge deployments or in limited computing

scenarios such as robotics, gaming, and healthcare.

2.1. Model Architecture

To effectively initialize our model to handle text, visual, and

action tokens as input, we initialize our architecture with

two pre-trained submodules. First, we use CLIP ViT-B/16

from Radford et al. [47] to initialize our visual encoder, de-

noted Eθ, and initialize our action and language decoder

model, Fφ, from OPT-125M [65]. Given a video input,

our encoder uses temporal embeddings and Gated Tempo-

ral Attention blocks that only activate for multi-frame inputs

(shown in Figure 2). We jointly train our visual encoder on

two objectives: masked auto-encoding (MAE) on the visual

inputs and next token prediction for the language and action

targets. Our initial experiments revealed that CLIP’s stan-

dard learned positional embeddings hindered convergence

during pre-training on the MAE objective, leading us to use

sinusoidal positional embeddings instead.

We enable cross-modal information sharing by training

an additional linear layer � that transforms the embeddings

of our visual encoder Eθ into the token embedding space

of our transformer model Fφ. Thus, given a text prompt W

and a single video frame Vi, we can obtain Â, a text token

or action token prediction via Â = Fφ(W, �(Eθ(Vi))). To

incorporate prior time steps into our model, we also include

the previous actions and visual frames as input during pre-

training. For a given time step t, we predict Ât as

Ât = Fφ(W, �(Eθ(V1)), A1, �(Eθ(V2)), A2,

. . . , �(Eθ(Vt−1)), At−1, �((Eθ(Vt))). (1)

In practice, due to memory constraints, we only handle

the previous M actions and frames, and update the previous

Vi and Ai as a sliding window. Since we are using relatively

small checkpoints, we are able to jointly train our entire

model during pre-training. This is in contrast to most pre-

vious visual-language models that largely rely upon frozen

submodules and/or seek to learn an adaptation network for

cross-modal alignment [2, 32, 37]. We show our general

process for tokenization, cross-modal information sharing,

and token prediction in Figure 3.

Figure 2. Our Visual Encoder, Eθ . We use a lightweight gated

temporal attention mechanism that activates only for multi-frame

inputs, allowing us to use most of the model parameters for both

image and video inputs while still enabling cross-frame temporal

attention within the visual encoder when desired. We use sinu-

soidal positional embeddings for effective MAE reconstruction.

2.2. Pre-Training Strategy
We pre-train our model on a wide range of robotics and

gaming tasks, with each input sample containing text in-

structions, videos, and action tokens. We notate each sam-

ple as a sequence S = (W,V1, A1, V2, A2, . . . , VT , AT ),
where W is the sequence of tokens corresponding to the

text instruction, Vi is the sequence of image patches corre-

sponding to frame i, and Ai is the sequence of action to-

kens corresponding to the frame i of a video sequence of T
frames. Note that each action token sequence Ai contains

information about both the internal state of the agent and

the embodied actions taken at frame i. We denote wj as the

tokens of the text prompt W , and denote the parameters of
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Figure 1. Overview of our Interactive Agent framework. Our foundation model is designed to process multi-modal information that conveys

various levels of abstraction. This approach facilitates a comprehensive understanding of the context and environment, thus ensuring that

actions are coherent. By training on a variety of task domains and applications, we develop a versatile foundation model that can be

fine-tuned for executing optimal actions in a variety of contexts.

our language and action decoder model as φ and the param-

eters of our MAE encoder-decoder as θ. For each sample,

there are three components to the loss: language modeling,

masked image auto-encoding, and action modeling. The

language modeling loss is a standard causal language mod-

eling loss to minimize the negative log likelihood of each

token in the instruction conditioned on prior tokens. The

language modeling loss for a particular sample S is:

Llang(S) = −
|W |∑

j=1

log pφ(wj |w<j). (2)

The masked image autoencoding loss is generated by

randomly masking 75% of the image patches and calculat-

ing the mean-squared error between the reconstructed im-

age and original image in pixel space for the masked image

patches. The masked auto-encoder loss for a particular sam-

ple S is:

Lmae(S) =

T∑

t=1

||U(Vt)− U(Dθ(Eθ(M(Vt))))||22, (3)

where M randomly masks 75% of the image patches, U only

selects the masked out features, and Eθ and Dθ are the en-

coder and decoder for the vision module, respectively. Fi-

nally, the action modeling loss minimizes the negative log-

likelihood of each action token conditioned on all prior in-

formation, including all text tokens, prior visual tokens, and

prior action tokens. The action modeling loss for a particu-

lar sample S is:

Lact(S) = −
T∑

t=1

|At|∑

i=1

log pθ,φ((at)i|W,V≤t, A≤t, (at)<i).

(4)

The full loss function for each sample combines the

above components:

L(S) =
Llang(S) + Lmae(S) + Lact(S)

|W |+∑T
t=0(|Vt|+ |At|)

. (5)

On robotics data, we only use T = 4 frames of video

as input since the tasks are Markovian and therefore do

not require long histories to accurately predict the next ac-

tion. Our gaming data samples use T = 9 frames of video

as input since an observation history is necessary for the

partially-observable gaming tasks.

3. Tasks
To evaluate the effectiveness of our approach, we applied

our methodology to three distinct scenarios, encompass-

ing representative downstream tasks and novel domains:

(1) robotics, encompassing human-machine manipulation

in the physical world; (2) gaming, allowing for interactive

agents to be embodied in virtual reality; and (3) health-

care, an out of domain scenario where our methodology can
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Figure 3. Our unified tokenization framework. We propose a gen-

eral pre-training strategy for predicting input tokens. For text to-

kens, we use the standard language modeling task with next token

prediction. For actions, we expand the vocabulary of the language

model to include action and state tokens that represent each of the

action and states possible for the agent across each specific do-

main. Finally, we incorporate visual tokens into our framework by

training a visual encoder-decoder to predict masked visual tokens.

Fφ is trained via causal masking over the entire input sequence S.

be evaluated on relatively standard multimodal tasks. For

each of these tasks, the pre-trained model was later fine-

tuned with specific datasets. As a result, the model demon-

strated reasonable and competitive performance in terms of

action prediction, visual understanding, natural language-

driven human-machine interactions, gaming, and hospital

scene understanding. We outline the task definitions and

specific datasets used below.

3.1. Robotics Tasks
For the robotics scenario, we tested the model on language-

guided manipulation tasks. To this end, we selected two

distinct robotics manipulation datasets: Language-Table

[39] and CALVIN [41]. In the Language-table dataset,

a robot gripper rearranged tabletop objects following lan-

guage commands. The data were collected through tele-

operation in a simulation, totaling 4.93 million frames.

In the Calvin dataset, a 7-DOF robot manipulator per-

formed manipulation tasks following relatively abstract in-

structions linked with a series of language commands.

We utilized only the data containing language instructions,

which amounted to 1.44 million frames. We chose these

two datasets to gain insights into the model’s performance

across two dimensions: language-instruction abstraction

and task-step length.

3.2. Gaming Tasks
Our primary gaming dataset consists of the Minecraft

demonstrations collected by contractors in [4]. In the orig-

inal dataset, contractors were simply instructed to play

Minecraft with no specific goal, and the dataset provided

Figure 4. Our robotics and gaming pre-training pipeline. For con-

sistency, we use the same notation as in Sections 2.1 and 2.2; we

represent our text instruction as W , input frames as Vt, our vi-

sual encoder and linear projection layer as Eθ and �, respectively,

our action and language decoder model as Fφ, and the predicted

actions at time step t as Ât. In the figure above, we show an ex-

ample prompt and action prediction set from Language Table, but

note that our process is identical across all pre-training datasets.

video gameplay synchronized with player actions and in-

ventory metadata. However, since our architecture can

leverage text instructions, we use GPT-4V to label videos

with more specific instructions. Our prompt to GPT-4V also

includes changes in the player’s inventory over the video,

which we found helped to reduce misclassifications of ob-

jects and actions in the video. In total, the Minecraft portion

of our pre-training dataset consists of 4.7 million frames.

In addition to Minecraft, we also used a dataset of game-

play from Bleeding Edge, a team-base multiplayer game,

which consists of video and synchronized player actions.

Similarly, there are no specific instructions provided with

the video, so we use GPT-4V to label the videos in our

dataset. The Bleeding Edge portion of our pre-training

dataset consists of 2.3 million frames across 7 different set-

tings in the game.

3.3. Healthcare Tasks
In the healthcare domain we explored, our main dataset con-

sisted of real-world recorded scenes from hospital ICU (in-

tensive care unit) rooms using wall-mounted RGB cameras.

Experienced ICU nurses generated captions of extracted 5-

10 second video clips depicting common nursing activities

in the ICU. We also included routine nursing documenta-

tion of important observations based on longer 5-30 minute

windows, which included common clinical measures that

assist with assessment and treatment of the patient’s condi-

tion. For the analysis described in this paper, we focused

on the RASS (Richmond Agitation-Sedation Scale) score

used to assess the patient’s state of agitation and sedation

[51] and the bed position to confirm that the head of the bed

is at the proper angle to decrease the chance of acquiring

a ventilator-associated pneumonia [25]. Both assessments

are recorded frequently in the medical record and automated

documentation has the potential to optimize caretaker time.
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Figure 5. A High-level Overview of our Healthcare Tasks. We

leveraged nurse-labeled annotations to train our multimodal agent

on healthcare data. To adapt our model for visual question an-

swering, we generated additional training data with GPT-4 using

the PHI-safe process shown in the Appendix.

In order to fine-tune our model for human interactions in

our ICU use case, we leveraged the nurse-provided video-

clip captions and clinical documentation to have GPT-4

generate a synthetic video question-answer dataset that was

used to expand the capabilities of our model after healthcare

fine-tuning. A definite advantage of the GPT-4 generated

derivative dataset is that it did not use any confidential pa-

tient data and consequently can be made publicly available

to train any language-grounded clinical model. Figure 5

provides an overview of the healthcare tasks we evaluated:

(1) video captioning, (2) video question answering, and (3)

RASS score prediction (which we formulate as an activity

recognition problem). For details about our GPT-4 based

question-answer generation procedure, see the Appendix.

4. Experiments

To effectively evaluate the ability of our pre-trained model

to serve as a foundation model for interactions, we ground

our evaluation in real-world domains with diverse action

sets, visual data, and tasks. We also choose healthcare as

an illustrative out of domain setting, as no healthcare data

was used during pre-training. The details of the experimen-

tal settings are described in the following sub-sections.

4.1. Pre-training Setup
To pre-train our model, we used the full training sets of Lan-

guage Table, CALVIN, Minecraft, and Bleeding Edge, and

trained for 100 epochs. We used a linear warmup cosine

learning rate scheduler, with an initial learning rate of 1e-

4. We used 12 nodes of 16 V100 GPUs for 175 hours for

pre-training.

We extended the vocabulary of our transformer decoder

by adding novel action tokens corresponding to the actions

and agent states found in our joint pre-training dataset. All

tasks include a token to indicate starting actions and a token

to indicate ending actions. For Minecraft, there are addi-

tionally 23 button actions, and we discretized mouse actions

to 100 bins along the x axis and 100 bins along the y axis.

For Bleeding Edge, there are 11 button actions, and 2 joy-

sticks. Each joystick has 256 possible values for rotation

and 4 values for magnitude, resulting in a total of 520 joy-

stick action tokens.

For robotics, we added new action tokens corresponding

to valid actions in the environment, along with agent state

tokens for proprioception. For all robotics data, we included

a special action token to indicate the end of a trajectory. In

Language Table, we included 21 binned actions for each of

the x and y directions, representing the end effector transla-

tion target. We also included 21 binned state tokens repre-

senting the current end effector translation for each of the x
and y directions, and an equal number of state tokens repre-

senting the previous robot action. In CALVIN, we included

two actions for the gripper, indicating opening and closing,

along with 21 actions for each of the six degrees of freedom

of the end effector in the relative Cartesian displacement

action space. We also included 21 binned states for each of

the 14 attributes of the proprioceptive state, excluding the

gripper action which has two states.

Our gaming dataset has 525,309 trajectories for

Minecraft and 256,867 for Bleeding Edge, each consist-

ing of 9 frames. Our robotics dataset consists of 1,233,659

trajectories for Language-Table and 360,566 for CALVIN,

each consisting of 4 frames. Therefore, our total pretrain-

ing dataset consists of 13,416,484 frames. When sampling

trajectories to train our model, we additionally added color

jitter to each of the images, randomly scaling the brightness

and saturation between 70% and 140%, and randomly shift-

ing the hue by at most 0.05. We plot our pre-training loss in

Figure 6.

4.2. Robotics Experiments
Our final pre-trained checkpoint was fine-tuned for the

Language-Table and CALVIN datasets and evaluated sep-

arately. For fine-tuning, we used the same pipeline as in

pre-training, maintaining the original MAE and language-

modeling loss functions, and the original vocabulary size.

During fine-tuning, 50% of the image patches were masked,

while no masking was involved in the evaluation.

4.2.1. Language-Table
In the Language-table dataset, we used data from a setup

involving a total of 8 blocks, out of which 6 blocks were

non-manipulated and unrelated to the tasks. This setup re-

sulted in 181,020 trajectories. We split each trajectory into

a series of 4 frames to fit our model architecture, resulting

in 1,233,659 samples for fine-tuning. To investigate perfor-

mance against different task characteristics, the model was

evaluated on 5 different subtasks: 1) moving a block to an-

other block; 2) moving a block relative to another block; 3)
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CALVIN LANGUAGE TABLE

MODEL 1 STEP 2 STEP 3 STEP 4 STEP 5 STEP AVG LENS SUCCESS RATE

RT-1 [6] 84.4 61.7 43.8 32.3 22.7 2.45 74.0
GR-2 [10] 98.6 96.1 93.1 90.1 85.9 4.64 —
MDT [50] 98.6 95.8 91.6 86.2 80.1 4.52 —
ROBOFLAMINGO [35] 96.4 89.6 82.4 74.0 66.0 4.08 —

MCIL [38] 28.2 2.5 0.3 0.0 0.0 0.31 —
3D-VLA [67] 44.7 16.3 8.1 1.6 0 -
OURS (FROM SCRATCH) 20.6 0.8 0.0 0.0 0.0 0.214 40.0
OURS 64.8 29.0 12.3 4.7 1.9 1.127 42.0

Table 1. Results for robotics fine-tuning across tasks on CALVIN and Language-Table, along with their corresponding evaluation metrics.

For Calvin, our method, MCIL and 3D-VLA only use a static camera. Other methods use both the static camera and the wrist camera.

moving a block to an absolute position; 4) moving a block

to a relative position; 5) separating two blocks. For each

task, 50 trajectories were randomly sampled and evaluated

three times, and the average success rate was computed.

While the pre-trained model performed better than train-

ing from scratch (Table 1), our gains were not particularly

substantial (2% absolute improvement). Furthermore, our

model was outperformed by other models such as RT-1 [6]

which used significantly more robotics data for pre-training.

4.2.2. CALVIN
The CALVIN dataset comprises a much more challenging

dataset than Language Table. Each long-step trajectory was

split into a series of 4 frames, resulting in 360,566 samples

across 34 tasks for fine-tuning. To better capture the entire

scene, the third-person view RGB camera was chosen as the

source of image input from the available camera resources.

For fine-tuning, we incorporated all available appearance

settings, including the one used for testing, to enlarge the

dataset (following the standard ABCD → D task defini-

tion given in CALVIN [41]). To evaluate the model perfor-

mance with multiple steps, we computed the averaged suc-

cess rate at each step, following the methodology described

in the original CALVIN pape. When compared to Com-

pared to Multi-context Imitation Learning (MCIL) [38], our

model shows better performance while only using 1% of the

data (Table 1). Furthermore, we significantly outperform

3D-VLA [66], the only other method evaluated in the same

setting (third-person camera only). We also note that our

agent pre-training significantly improved our model’s per-

formance for CALVIN (e.g., > 43% absolute improvement

in the 1 step setting).

4.3. Gaming Experiments
For both gaming settings of Minecraft and Bleeding Edge,

we evaluated our model’s ability to predict actions given

video frames and high-level instructions, along with its

MAE reconstruction quality. Specifically, we used a held-

out test dataset of 100 videos each, formatted in the same

manner as our training data.

In order to effectively evaluate the quality of generated

outputs, we report the BLEU-4 scores of actions in Table 3.

We chose BLEU-4 scores in order to evaluate the quality of

model outputs when given the ground truth and without re-

quiring access to a simulator. We compare our pre-trained

baseline to fine-tuning on task-specific data initialized from

our pre-trained model and a version initialized from CLIP

and OPT. We find that both fine-tuned models over-fit to

the training data within 5 epochs, so we report the BLEU-4

test scores from the checkpoints with the highest validation

score. We find that fine-tuning our pre-trained model is sig-

nificantly more effective than training from scratch for both

gaming domains, highlighting the importance of our diverse

pre-training mixture. We also show a visualization of pre-

dicted actions from our fine-tuned model compared to the

validation ground-truth in Table 2 and the Appendix.

MODEL TRAINING MC (BLEU-4)↑ BE (BLEU-4)↑
FINE-TUNED ONLY 0.174 0.238
PRE-TRAIN ONLY 0.170 0.249
PRE-TRAIN AND FINE-TUNED 0.272 0.411

Table 3. Performance metrics for gaming data. We report BLEU-4

scores for action prediction in Minecraft (abbreviated as MC), and

Bleeding Edge (abbreviated as BE). Cross-domain pre-training re-

sults in similar performance to domain-specific fine-tuning with-

out pre-training. However, best performance is achieved with both.

4.4. Healthcare Experiments
For the experiments on the healthcare dataset, we evalu-

ated our model’s ability on three separate downstream tasks:

video captioning, visual question answering, and activity

recognition in the form of RASS score prediction. We used

the final checkpoint from our pre-training run as described

in Section 4.1.

Healthcare Setting For visual question-answering, we

use the question as the text prompt W , and use the fixed

text prompt “A video of” for video captioning. We train our

model to output the text tokens of the corresponding caption

or answer and report the average perplexity across both set-

tings. We frame RASS score prediction as a 10-way activ-
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Task Text instruction Start frame Predicted Action Ground Truth Action

Minecraft

the player is using an

iron sword to attack

and kill pigs in a for-

est...

[STARTACTION]

[attack] [ENDOFAC-

TION]

[STARTACTION]

[attack] [ENDOFAC-

TION]

Bleeding

Edge

the player is controlling

a red robot ... fighting

other characters

[STARTACTION]

[lockon][meleeattack]

[lrot162] [lmag4]

[ENDOFACTION]

[STARTACTION]

[lockon][meleeattack]

[lrot160] [lmag4]

[ENDOFACTION]

Table 2. Examples of actions predicted by our fine-tuned models given text instructions and a corresponding video frame for Minecraft

(above) and Bleeding Edge (below). More examples are presented in the Appendix.

MODEL PERPLEXITY ↓ RASS ACC ↑
CLIP + OPT (FROZEN) 93.3 55.4
CLIP + OPT (UNFROZEN) 102.7 92.6
OURS (FROM SCRATCH) 100.0 70.3
OURS (AGENT PRE-TRAINED) 106.3 95.7

Table 4. Performance on healthcare text generation and RASS

score action recognition, along with the corresponding evalua-

tion metrics. Agent pre-training on robotics and gaming data im-

proves performance for action recognition, but does not improve

the model’s text generation abilities in new domain settings.

ity classification problem, and train a separate classification

head for our visual encoder. We use the video-level setting

for our visual encoder with 9 frames as input, as described

in the Appendix.

To evaluate the effectiveness of our pre-training frame-

work, we compared the performance of our model against

three baselines that also leverage CLIP and OPT for initial-

ization. First, we compared against an frozen baseline that

uses the same pre-trained models, kept frozen, while fine-

tuning either a single linear layer for cross modal informa-

tion passing (similar to the alignment stage of LLaVA [37])

or for linear probe classification. Second, we compared

against a unfrozen baseline that uses the same pre-trained

models but fine-tunes them jointly along with the linear

layer. For both of these baselines, we encode frames with

CLIP individually and concatenate the frame-level embed-

dings. Third, we compared against a from scratch baseline

that uses our same joint image-video encoder architecture

and is initialized from CLIP and OPT, but does not use any

large-scale agent pre-training.

We show our performance against the proposed baselines

in Table 4. For all results, we train for 20 epochs on 4 V100

GPUs with a fixed learning rate of 4e-5 and report results

on a held-out evaluation set. For fair comparison, we do not

perform any hyperparameter search.

5. Analysis and Discussion

On the importance of visual encoder training. We

found that our pre-trained visual encoder outperforms CLIP

on all action-oriented tasks, but performs worse for natu-

ral language generation. The key differences between our

visual encoder and CLIP are: (1) the usage of sinusoidal

positional embeddings, and (2) the joint MAE and next to-

ken prediction pre-training objectives that are propagated to

the visual encoder. Our findings are consistent with Kim et
al. [26], which also found that off-the-shelf visual encoders

like CLIP provide poor features for robotic manipulation

tasks and require gradient propagation to be effective and

Xiao et al. [62], which found MAE to be an effective visual

pre-training method for robotic control tasks.

Learning to see via interaction. When evaluated in a

new domain, we found that our agent pre-training provided

a powerful visual encoder that could effectively recognize

actions occurring in videos even when used without the

transformer decoder Fθ (Table 4). This is encouraging, and

suggests that generalist visual encoders can be learned by
jointly observing and interacting with the environment.
This aligns with Gibson’s ecological theory of perception

[17], which posits that perception is inherently tied to ac-

tion, and that interacting with the environment allows in-

dividuals to directly pick up more relevant and meaningful

information, improving perceptual accuracy and efficacy.

When is agent pre-training most helpful? Our agent

pre-training strategy improved performance for all action

prediction and action recognition tasks when compared to

training from scratch, as shown in Table 1, Table 3, and Ta-

ble 4. However, agent pre-training was especially important

in more complex environments like CALVIN, Minecraft,

and Bleeding Edge, where relative performance improved

by up to 215%, 56%, and 73% respectively. In contrast, the
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Figure 6. A plot of total pre-training loss over 100 epochs. Loss

spikes are due to the MAE component of the loss. A figure show-

ing each loss component separately can be found in the Appendix.

simpler Language Table setting only saw a relative perfor-

mance improvement of 5%. We note that in all domains,

best results were achieved by first pre-training across all en-

vironments and then fine-tuning in each environment sepa-

rately, and that performance of our model when only pre-

trained across all environments was often similar to that of

our model when only fine-tuned on one environment (with-

out pre-training), as shown in Table 3.

Pretraining Loss Stability. We find that although our

combined loss is relatively stable during pre-training, there

are two loss spikes, as shown in Figure 6. These spikes

are caused by the MAE loss. Importantly, He et al. [21]

observed that as model size increases, MAEs can become

challenging to train due to loss instabilities. We believe that

similar scaling issues could arise for frameworks such as

ours that incorporate next token prediction and MAEs.

6. Related Work
Foundation Models A large number of works have

sought to develop general-purpose foundation models based

on large-scale pre-training on broad-scale internet data from

a variety of sources [5]. Within the field of Natural Lan-

guage Processing, this generally consists of larger propri-

etary LLMs [61] such as the GPT-series [8, 42], or smaller

open-source models such as the LLaMA series [58], or

instruction-tuned variants such as Alpaca [57] and Vicuna

[68]. Within the field of computer vision, strategies such

as masked auto-encoders [21] and contrastive learning [47]

are two popular methods for self-supervised learning.

Multimodal Understanding Recently, many multimodal

models have been developed that seek to learn a relatively

small number of parameters to connect large pre-trained vi-

sual encoders and language model decoders (that are gener-

ally frozen) with representative models including Flamingo

[2], the BLIP-series [11, 32, 34], and LLaVA [37]. These

models are generally trained using the standard language

modeling cross-entropy loss on large-scale internet data

consisting of visual-text pairs, using a source of data sim-

ilar to that used to train contrastive dual encoder models

[3, 47, 56]. Unlike most previous work, we explore training

models to predict visual tokens and action tokens in addi-

tion to language tokens and explicitly train our model for

agentic tasks.

Agent-Based AI Recent research has focused on employ-

ing advanced large foundation models to create Agent-

based AI systems, as shown in Durante et al. [15]. In the

field of robotics, for instance, recent studies have high-

lighted the potential of LLM/VLMs in enhancing multi-

modal interactions between robots, environments, and hu-

mans. This applies to both manipulation [1, 6, 7, 18, 23, 33,

35, 43, 53, 59] and navigation [9, 12, 13, 16, 22, 36, 52, 69].

Additionally, significant advances in reinforcement learning

have improved agent policy training on top of VLM/LLMs.

Key advancements have been made in areas such as reward

design [24, 40, 64], efficient data collection [14, 27], and

the management of long-horizon steps [29, 44, 55, 60, 63].

Similarly to robotics, gaming agents require an under-

standing of visual scenes and textual instructions/feedback

[19, 30, 46, 54]. Agent-AI in the context of healthcare has

focused on the text-based interaction between humans by

utilizing the capabilities of LLM/VLMs. Representative ap-

plications include diagnostic assistance [28, 31] and knowl-

edge retrieval [20, 45].

Vision-Language-Action Models More recently, a con-

current line of work has emerged that endows VLMs with

action capabilities. These Vision Language Action Mod-

els (VLAs) use a similar setup to VLMs, and expand the

language vocabulary to include discretized action tokens.

Exemplar methods include RT-2 [7], OpenVLA [26], and

3D-VLA [66]. In comparison, our method not only uses

discretized action tokens, but also introduces controller- and

domain-specific state tokens, enabling multi-controller and

multi-domain pre-training. Moreover, our method can ex-

ploit vision-only data for pre-training and can create adapt-

able pre-trained vision encoders by jointly observing and

interacting with the environment.

7. Conclusion
We introduced a framework for learning Interactive Agent

Foundation Models designed to take text, action, and/or

visual inputs during pre-training. We found that by pre-

training on a mixture of robotics and gaming data, our

model is effective in modeling actions across a variety of

domains, even showing positive transfer when fine-tuning

in unseen domains such as healthcare. The generality of our

framework allows it to be broadly applicable across percep-

tion, reasoning, and decision-making settings, facilitating

the creation of generalist, multimodal agents.
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