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Abstract

Self-supervised learning (SSL) has enabled the development
of vision foundation models for Earth Observation (EO),
demonstrating strong transferability across diverse remote
sensing tasks. While much research has focused on network
architectures and training strategies, the role of dataset
curation – particularly in balancing and diversifying pre-
training datasets – remains underexplored. In EO, this chal-
lenge is exacerbated by the strong redundancy and heavy-
tailed distributions of satellite imagery, which can lead to
biased representations and inefficient training.
In this work, we introduce a dynamic dataset pruning strat-
egy designed to enhance SSL pre-training efficiency by max-
imizing dataset diversity and balancedness. Our method
iteratively refines the training set without relying on a pre-
existing feature extractor, making it well-suited for domains
where curated datasets are unavailable. We illustrate our
approach on the Sentinel-1 Wave Mode (WV) Synthetic
Aperture Radar (SAR) archive, a challenging dataset pri-
marily composed of ocean observations. We train models
from scratch on the entire Sentinel-1 WV data archive over
10 years. Our results, validated across three downstream
tasks, show that dynamic pruning improves both computa-
tional efficiency and feature quality, leading to better trans-
ferability in real-world applications. This work provides a
scalable and adaptable solution for dataset curation in EO,
paving the way for more efficient and generalizable founda-
tion models in remote sensing.
We release the weights of Nereus-SAR-1, the first foundation
model in our Nereus models family — a series of models
dedicated to ocean observation and analysis using SAR im-
agery, at github.com/galeio-research/nereus-sar-models/.

1. Introduction
Self-supervised learning (SSL) has recently demonstrated
much potential for Earth Observation (EO). Vision founda-

tion models, in particular, have shown a remarkable abil-
ity to learn task-agnostic image representations without re-
quiring any human labels. A wide range of EO foundation
models are now available, covering multiple modalities,
whether optical, radar, multispectral or hyperspectral data
[e.g., 6, 21, 25, 30, 32, 33]. Much effort has been put into
exploring new network architectures and training strategies
to improve the performance of these foundation models, and
in particular their ability to handle multiple remote sensing
modalities. However, one aspect of model pre-training has
so far attracted relatively little attention, namely the selec-
tion of images to build pre-training datasets.

There is now a large body of evidence that SSL model
performance on downstream prediction tasks is strongly de-
pendent on the scale, on the diversity, and on the balanced-
ness of the pre-training datasets [3, 19, 37, 55]. By contrast,
training vision models on random collections of images
leads to a drop in performance [51], likely because of the
heavy-tailed distribution of concepts in uncurated datasets
[31]. Large Language Models (LLMs) are trained on care-
fully curated, high-quality datasets [35, 53]. The challenge
of dataset balancedness is particularly acute in EO because
remote sensing imagery exhibits a highly non-uniform dis-
tribution, with some concepts, like oceans, deserts, or trop-
ical forests, being much more frequent than others. Such a
strong imbalance may lead to biases toward a few dominant
scenes in the learned representations, as well as a waste of
computational resources during training.

To overcome this challenge, most existing EO founda-
tion models rely on a handful of pre-compiled, sometimes
carefully curated datasets, like BigEarthNet [47], SSL4EO
[59], SAtlasPretrain [4] or FMoW [10]. Data curation in
these datasets is typically achieved by selecting images ac-
cording to a criterion, often based on land cover, meant to
ensure balancedness in the resulting dataset [47, 48, 59].
A similar approach was taken in the Prithvi model [49],
whereby individual Harmonized Landsat/Sentinel-2 images
were selected based on average climatology and land cover
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to build the model’s pre-training dataset.
However, such approaches have important drawbacks.

First, they require an a priori selection criterion to build the
pre-training dataset. While land cover may certainly make
sense for land-based imagery, it is not the only choice one
could think of. Besides, for some modalities, like SAR im-
agery over the ocean, devising such a criterion may require
substantial efforts that are not replicable for other modalities
(for instance, diversity in ocean imagery is largely driven
by changing weather conditions). Furthermore, there is
no guarantee that the resulting datasets are truly balanced,
since the selection criteria, like land cover, are always re-
ductive (diversity in land imagery is not only driven by dif-
ferences in land cover, but also by seasonality, weather, ex-
treme events, etc.)

We address this challenge by introducing a simple, yet
effective strategy to automatically prune the pre-training
dataset in SSL to maximize its diversity and balancedness.
To do so, we build on previous work [55] to define a dy-
namic coreset selection strategy over time for highly redun-
dant SSL datasets, particularly in scenarios where a reliable
pre-existing feature extractor is unavailable for pruning. We
apply our method to radar imagery over the oceans, a choice
example of a strongly redundant EO dataset. Using three
different downstream tasks, we show how dynamic prun-
ing increases model performance while improving compu-
tational efficiency. Our results demonstrate that selecting
a diverse and balanced subset of pre-training data leads
to improved feature representations, ultimately enhancing
the transferability of self-supervised models to real-world
applications. By validating our approach across multiple
tasks, we highlight its robustness and generalizability, offer-
ing a practical solution for curating large-scale, redundant
EO datasets in the absence of predefined feature extractors.
We also show that a carefully-trained, single-modality foun-
dation model can outperform large, multi-modal models.

2. Related Work
Dataset pruning/coreset selection Scaling laws high-
light the balance between dataset size, diversity, and model
size as key factors in achieving optimal performance in
self-supervised learning. These empirical laws suggest that
performance improvements require exponentially increas-
ing dataset sizes. However, it is known that naive data prun-
ing can be a promising approach to mitigate the constraints
imposed by these scaling laws [44].

In practice, self-supervised training across different do-
mains, including images [5], language [2, 17], and vision-
language models [7, 36, 56], commonly involves an initial
curation phase of the large datasets. This curation process
often goes beyond simple deduplication [52] and aims to
remove semantic redundancies within the dataset.

Numerous dataset pruning, coreset selection, and dataset

distillation strategies have been developed within machine
learning and deep learning to influence model training by
effectively modifying the training dataset. These strategies
follow various heuristics and objectives, such as leverag-
ing model optimization status to encourage learning from
harder examples—such as focal loss or self-paced reweight-
ing [13, 26, 54]; progressively increasing data sample diffi-
culty using augmentation techniques [11, 20, 66]; utilizing
label information for pruning [34, 43, 63]; or pruning to en-
sure better data coverage [65, 67].

The curation of large datasets for self-supervised train-
ing presents distinct challenges, particularly in cases where
no effective feature extractor exists or where datasets ex-
hibit high redundancy. For EO datasets, most existing
approaches rely on metadata to guide dataset sampling,
such as balancing datasets based on land cover types or
urbanization patterns. However, in cases where meta-
data are unavailable or insufficiently informative, alterna-
tive/complementary strategies must be explored to ensure
dataset balance and effective training outcomes.

Recent work has sought to perform unsupervised dataset
curation via hierarchical clustering in the latent space [55].
However, the proposed approach still requires an existing
feature extractor and cannot therefore be considered fully
unsupervised. We build on these efforts to develop a dy-
namic sampling strategy that functions even without a pre-
existing feature extractor. As a case study, we focus on
a niche modality – Sentinel-1 Synthetic Aperture Radar
(SAR) imagery in wave mode – to demonstrate the effec-
tiveness of this approach. In this example, the training
dataset can be considered overly redundant, as wave mode
data mainly consists of images of the ocean, which are ex-
ceedingly similar.

Sentinel-1 SAR foundation models Multiple SAR foun-
dation models have already been published in the literature.
• CROMA (Contrastive Radar-Optical Masked Autoen-

coders) [15]: CROMA is based on a hybrid training strat-
egy mixing MAE-type reconstruction with a contrastive
(InfoNCE) loss, using optical and radar images as positive
pairs. CROMA was pre-trained on the SSL4EO-S12 [59]
dataset – a geographically and seasonally diverse dataset
of 1 million paired Sentinel-2 L2A and Sentinel-1 IW
GRD samples.

• DeCUR (Decoupling Common and Unique Representa-
tions) [60]: the idea behind the approach is to take into ac-
count the fact that, in multi-modal self-supervised learn-
ing, some modalities usually contain information that is
not present in other modalities (for example, radar sen-
sors will see through clouds, but not optical ones [16]).
DeCUR therefore relies on cross-correlation matrices be-
tween embeddings from different modalities to separate
between cross-modal common ones and modality-unique
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ones. Intra-modal representation are also enhanced using
a regularization term on modality-specific embeddings to
avoid collapse. The model was also pre-trained on the
SSL4EO-S12 [59] dataset.

• MoCo (Momentum Contrast) [59]: like DINO [19], the
method we use in our experiments, MoCo is a contrastive
self-supervised learning strategy that involves building
dynamic dictionaries of embeddings. In the InfoNCE
loss, instead of comparing an image to the ones from the
same batch, MoCo allows to query from a larger queue,
in which embeddings are computed on-the-fly using a
momentum-updated encoder. The model was pre-trained
on the SSL4EO-S12 [59] dataset.

• DOFA (Dynamic One-For-All) [64]: DOFA avoids using
separate encoders when training on multiple modalities
by using a dynamic weight generator network that adjusts
the weights of a shared vision backbone according to the
wavelength(s) of the spectral bands of the input image.
The model was pre-trained on a variety of datasets, in-
cluding Sentinel-1 IW GRD images from the SAtlasPre-
train [4] dataset.

• SoftCon [61]: unlike other strategies, the SoftCon (Soft
Contrastive learning) strategy relies on automatically gen-
erated image labels to compute a modified InfoNCE loss,
which weighs the similarity between images in the same
batch according to their labels. Labels are obtained by
matching data from Google’s Dynamic World land cover
maps with images from the SSL4EO-S12 [59] dataset,
which is used for pre-training. The training also involves
Siamese masking of image patches for enhanced robust-
ness.

• WV-net [18]: a ResNet50 model trained on Sentinel-1
WV images using a SimCLR strategy, along with a set of
complex data augmentation techniques designed specifi-
cally for SAR imagery. WV-net was pre-trained on the
entire Sentinel-1 WV archive, at the time consisting of
about 9.9 million images.
All these models (except for WV-net) were pre-trained

on Sentinel-1 IW GRD only, which consists of intensity-
only, dual polarization (usually VV+VH) SAR images. WV
images, by contrast, are only acquired with the VV polar-
ization.

3. Methodology and Results

3.1. Sentinel-1 WV data

Our work is based on Synthetic Aperture Radar (SAR)
data acquired by the Sentinel-1 constellation, specifically
WaVe mode (WV) data acquired over the oceans. The ESA
Sentinel-1 mission is a constellation of two polar-orbiting,
sun-synchronous satellites (S-1 A and S-1 B) launched in
April of 2014 and 2016, respectively. They are equipped
with a C-band SAR instrument with frequency 5.405 GHz

(5.5 cm wavelength). They have a 12-day repeat cycle at
the equator, and are phased at 180◦ to provide an effec-
tive 6-day repeat cycle. S-1 B ceased to function in late
2021, while S1-C was launched in December 2024 and
is still in commissionning phase. The launch of S1-D is
planned for late 2025. These satellites operate in four dif-
ferent acquisition modes: WV, Interferometric Wide (IW),
Extra Wide (EW) swath and Stripmap (SM) modes. These
modes represent different acquisition strategies (chiefly in
terms of swath width, image footprint, resolution and polar-
isations), and are deployed over different geographies. WV
data is acquired almost exclusively over oceans (a few im-
ages cover Africa, Australia and the Great Lakes region of
North America). It consists in ≈ 20×20 km images with
a spatial resolution of 5×5 m, every 100 km along the or-
bit, acquired alternately on two different incidence angles
(≈23◦ and 36◦). WV data are only available in single-look
complex (SLC) format, while the more generally used IW
data are also available in ground range detected (GRD) for-
mat.
The WV data archive we used includes about 12 million
different images, covering the full 2015-2024 period (each
satellite produces approximately 60,000 WV images per
month). Their spatial distribution is very uneven. Some re-
gions, such as the South Pacific Ocean, have a much higher
concentration of images, while others, notably the North
Atlantic, are more sparsely covered (European waters are
observed in IW and EW modes). To build an initial training
database, we therefore sample from these 12 million images
uniformly in space and time, retaining about 2 million dif-
ferent images. We make sure during this step to exclude
all images used in our benchmarks (see section 3.5). To re-
duce the computational load, we downsample images to a
50-meter resolution, which preserves sufficient information
richness for model training and relevant benchmarking.
Sentinel-1 WV images are characterized by a high level of
redundancy. Many images exclusively display ocean waves,
and even when other phenomena are present (sea-ice or rain
cells, for instance), the background still chiefly consists of
ocean waves. As a consequence, many phenomena that can
be seen in WV images are rare, relatively speaking, com-
pared to ocean waves. This results in significant unbal-
ancedness in the dataset.

3.2. Training Framework

For our experiments, we employ the DINO self-supervised
learning strategy [8]. DINO is a contrastive learning
strategy that relies on self-distillation between a teacher
and a student model. It consists in learning a global
representation of an image using a mixture of global and
local views of that image. Global views pass through the
teacher model, which is tasked with predicting high-level
features, while the student model is tasked with predicting
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these same features from the local views. Regarding
network architectures, we use Vision Transformers (ViTs),
specifically ViT-Small and ViT-Base, with respectively 27
and 82 million parameters. For a fair comparison with
some of the existing SAR foundation models, we also train
a ResNet50 in the same conditions. This choice aligns
with the unimodal nature and high redundancy of the
dataset, where excessively large models would probably be
unnecessary. Note, however, that our proposed approach
is compatible with any training strategy and network
architecture.

3.3. Dynamic coreset selection for highly redundant
dataset

We present our simple dynamic sampling strategy in Al-
gorithm 1. We start by training a model with the selected
SSL loss (in this case, the DINO loss) for a pre-specified
number of warmup epochs, until a sufficiently effective fea-
ture extractor is learned. Then, at scheduled intervals during
training, the original dataset is clustered, and a subset of it
is sampled. The SSL model then continues training for the
remaining epochs until the next resampling step on this dy-
namically selected data.

Algorithm 1 SSL on an Overly Redundant Dataset (SSL-
ORD)

Require: Dataset D, Total training epochs T , Warm-up
epochs Tw, Sampling epoch frequency Ts, SSL training
algorithm A(·, ·, ·), Pruning strategy S(·, ·, ·, ·), Reduc-
tion ratio ρ, Sampling sequence (ηi).

Ensure: Trained model θ
1: Initialize model parameters θ0
2: θTw−1 ← A(θ0,D, Tw) ▷ Train without dataset

pruning
3: for epoch e = Tw to T do
4: if e mod Ts = 0 then ▷ Apply dataset pruning at

scheduled intervals
5: De+1 ← S(θe,D, ρ, ηe)
6: else
7: De+1 ← De

8: end if
9: θe+1 ← A(θe,De, 1)

10: end for

Algorithm 1 relies on access to two key procedures. The
self-supervised learning (SSL) training algorithm A(·, ·, ·)
takes a model checkpoint θ and performs SSL on the dataset
D for T epochs. This approach is therefore highly versatile
with respect to SSL methods. While we conducted exper-
iments using DINO for simplicity, any SSL strategy could
be employed within this framework. It provides a flexible
foundation for conducting extensive numerical experiments

across diverse training structures by relying solely on the
features extracted from the SSL-trained model. Interest-
ingly, certain SSL methods compute additional latent con-
cepts beyond extracted features, potentially providing valu-
able insights for improving unsupervised dataset clustering.
Exploring a deeper integration between the pruning strat-
egy and SSL mechanisms would be a fruitful direction for
future research.

Because this approach does not require a pre-existing
feature extractor, it is especially useful in scenarios where
none exists – such as for de novo modalities where reli-
able feature extractors have yet to be developed. This oc-
curs when a balanced and diverse dataset like ImageNet is
unavailable or when no self-supervised models have been
trained (or publicly released) on the specific modality.

Algorithm 1 relies on a pruning strategy S(·, ·, ·, ·),
which, given a (self-supervised) trained feature extractor
θ, prunes the dataset D to retain only a fraction ρ of the
original datapoints. The pruning strategy typically consists
of two steps: a clustering phase followed by a sampling
phase. The sampling parameter η controls the evolution of
the sampling strategy during training, allowing for dynamic
adjustments that may enhance learning. In practice, we ex-
perimented with a modified version of [55, Algorithm 1],
as described in Algorithm 2. This clustering-based pruning
approach was designed to rebalance large training datasets
in self-supervised learning, ensuring that the retained subset
remains diverse and representative throughout training.

Algorithm 2 Modified Hierarchical k-Means with Resam-
pling Algorithm [55]

Require: Dataset D ∈ Rn×d, Size of dataset subset nc,
Number of levels L, Clusters per level (ki)1≤i≤L, Sam-
pling diversity η ∈ [0, 1], Reduction ratio ρ, Hierarchi-
cal clustering algorithm H-KMEANS [55, Algorithm
1].

Ensure: Balanced dataset Dρ where
⌈
|Dρ|
|D|

⌉
= ρ

1: Inc ← RandomSubset({1, . . . , n}, nc) ▷ Randomly
sample a subset of indices

2: Dsmall ← D[Inc ] ▷ Extract subset from dataset
3: (Ct)1≤t≤L ← H-KMEANS(Dsmall, (ki)1≤i≤L) ▷

Perform hierarchical clustering
4: LT ← ASSIGN(D, CL) ▷ Assign clusters based on

final centroids CL

5: Dρ ← RESAMPLE(LT , ρ, η) ▷ Resample data to
achieve desired reduction

Algorithm 2 differs from [55, Algorithm 1] in that it
does not perform clustering on the entire dataset. Instead,
our primary motivation for pruning is to significantly re-
duce dataset redundancy rather than to capture its underly-
ing concepts. This approach ensures that dynamic dataset
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sampling incurs no additional computational burden on the
GPUs, as the clustering process is lightweight enough to be
offloaded to the CPU during training. If pruning is sched-
uled for epoch e, we store the embeddings of the first N data
batches, run step 3 of Algorithm 2 on the CPU, and progres-
sively run steps 4 and 5 as the remaining data batches within
epoch e are processed by the GPU.

A second difference is the introduction of the sampling
diversity parameter η ∈ [0, 1], which controls how data-
points are selected within each cluster. Specifically, η de-
termines whether sampling favors points near the centroid
(i.e., more representative) or those on the cluster boundary
(i.e., less representative). As previously observed [55], em-
pirical results suggest that sampling closer to the centroids
performs best when using a single pruned dataset, as this
promotes balance and well-discriminated concepts.

3.4. Experiments
We run experiments using a ResNet50, a ViT-S/16, a ViT-
S/8 and a ViT-B/8[14]. In each case, we pre-train the model
on our WV dataset without any dataset pruning, with prun-
ing that discards 50% of the dataset, and with pruning that
discards 75% of the dataset. We therefore conduct a total of
12 runs. For each run, we train the model for 200 epochs.
For the runs that include pruning, we adjust the number of
epochs so that the models are trained on the same number
of batches as the ones without pruning (with a 20-epoch
warmup before the first pruning, this means a total of 380
epochs for the 50% pruning and 740 epochs for the 75%
pruning). All runs are conducted with a batch size of 256,
an AdamW optimizer, a cosine scheduler with annealing,
and a 0.0001 initial learning rate.

3.5. Downstream Tasks
To quantify the performance of foundation models on
Sentinel-1 WV imagery, we use three different labelled
datasets, covering two kinds of tasks: classification and re-
gression. All the datasets are randomly split between train-
ing (80%) and validation (20%).
We report the performance of available, SOTA models
trained on Sentinel-1 dual-polarization imagery, namely
CROMA[15], MoCo[59], DeCUR[60], DOFA[64], and
SoftCon[61]. Note that the WV-Net[18] model is not pub-
licly available, and therefore we did not include it in this
study. For MoCo and DeCUR, we use the model versions
available from the torchgeo package [46].

3.5.1. TenGeoP dataset
The TenGeoP dataset [57] consists of 37,553 WV images
that were manually annotated by human SAR experts into
ten categories. These correspond to ten different geophys-
ical phenomena, of both oceanic and meteorologic nature
(pure ocean waves, wind streaks, micro convective cells,

rain cells, biological slicks, sea ice, icebergs, low wind ar-
eas, atmospheric fronts and oceanic fronts). For each im-
age, only one category was selected. The dataset covers the
entire ocean and is composed of Sentinel-1A WV images
acquired in 2016. Sample images are shown in Figure 1
The dataset is available at https://doi.org/10.17882/56796.

3.5.2. Significant Wave Height dataset
We randomly selected 10,000 WV images and labeled them
with their Significant Wave Height (Hs), defined as the
mean height of the highest third of the waves passing
through a point over a given period. The Hs values were
obtained from co-located altimeter measurements available
in the CMEMS database [12]. WV and altimeter data were
considered co-located if acquired within 3 hours of each
other and if the altimeter measurement was within ±2◦ of
the WV image center. When multiple altimeter measure-
ments met these criteria, we retained the one closest in
space. The data will be made publicly available.

3.5.3. Wind speed dataset
SAR images capture information on the sea-surface rough-
ness, which is related to surface wind speed [1, 22]. We
used a random subset of 50,000 images among those se-
lected by O’Driscoll et al. [38] and labeled with wind speed
using ERA5 reanalysis data [23] as ground truth. The data
are available at https://doi.org/10.5281/zenodo.7784019.

3.6. Results
3.6.1. Impact of dataset pruning
Table 1 summarizes the results of our experiments and high-
lights the impact of data pruning on model performance on
downstream tasks. We find that pruning the dataset leads
to an overall increase in performance on downstream tasks,
that can be very significant (for instance from 2.5 to 3%
for the TenGeoP classification task), at no additional com-
putation cost. The increase is smaller, however, for the two
regression tasks (on the order of 0.01-0.02 RMSE). A possi-
ble reason for this is that DINO may not be an ideal training
strategy for such tasks, as it favors a holistic understanding
of images and may overlook finer-scale texture details that
are important for SWH and wind speed prediction.

Furthermore, validation loss and k-NN probing curves
during training suggest that experiments with pruning
would benefit from even more training, since model per-
formance does not plateau when reaching our limit of 200
epochs, which is not the case for the no-pruning experi-
ments (Figures 2 and 3). Since images from downstream
datasets were excluded from the pre-training dataset, this
indicates better and stronger generalizability by the with-
pruning models, since they achieve a higher accuracy while
being (effectively) trained on a smaller set of data.

Dataset pruning also substantially reduces the compu-
tational cost required to reach a given level of model per-
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Figure 1. Illustration of the 10 geophysical classes in the TenGeoP dataset.

Model Pruning TenGeoP SWH Wind speed

ResNet50 0% 72.7 0.72 1.43
ResNet50 50% 73.8 0.71 1.42
ResNet50 75% 75.5 0.70 1.42
ViT-S/16 0% 76.0 0.70 1.40
ViT-S/16 50% 77.1 0.69 1.40
ViT-S/16 75% 78.6 0.69 1.39
ViT-S/8 0% 79.9 0.66 1.40
ViT-S/8 50% 81.6 0.64 1.39
ViT-S/8 75% 82.1 0.64 1.38
ViT-B/8 0% 80.5 0.65 1.38
ViT-B/8 50% 81.9 0.64 1.37
ViT-B/8 75% 83.6 0.63 1.37

Table 1. Summary of k-NN performance on the three downstream
tasks across our experiments. For each experiment, we show
the highest accuracy reached during training, regardless of epoch.
For experiments that involve pruning, this is usually around 200
epochs, but for the no-pruning experiments, the highest accuracy
is often reached earlier during training (Figure 3), after which the
accuracy plateaus, or decreases slightly.

formance for TenGeoP classification. For instance, the
best TenGeoP classification accuracy for a ViT-S/16 is 76%
when no pruning is applied during training, and it is reached
after about 145 epochs. By contrast, the same accuracy is
reached as early as after 85 epochs under the 75% pruning
scenario, a more than 40% gain in computational resources.

3.6.2. Comparison to other SAR foundation models

Table 2 compares the performance of existing SAR
Sentinel-1 foundation models with ours. The performance
tends to vary significantly across different downstream

Figure 2. DINO validation loss as a function of training epoch for a
ViT-S/16 model, with (blue) no data pruning, (orange) pruning that
discards 50% of the training dataset and (green) pruning that dis-
cards 75% of the training dataset. For the latter two curves, black
squares indicate epochs at which dataset pruning is performed.

tasks, as the relevant information is embedded at differ-
ent levels within the image. For example, class differ-
ences in TenGeoP are strongly linked to global-level fea-
tures, whereas wind field estimation depends on the finer
texture details of the image.

Most self-supervised models developed for SAR im-
agery have been trained on Ground Range Detected (GRD)
images in Interferometric Wide (IW) swath mode, which
are available in dual polarization (VV+VH). As a result,
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Figure 3. Same as Figure 2, but for the k-NN classification accu-
racy on TenGeoP.

Method Backbone TenGeoP SWH Wind

CROMA ViT-B/8 65.4 0.78 1.95
MoCo ResNet50 60.9 0.83 1.98
DeCUR ResNet50 58.3 0.84 2.10
DOFA ViT-B/16 58.4 0.96 2.40
DOFA ViT-L/16 63.4 0.95 2.43
SoftCon ViT-S/14 73.2 0.98 2.08
SoftCon ViT-B/14 74.8 1.01 2.08

Nereus-SAR-1 ResNet50 75.5 0.75 1.62
Nereus-SAR-1 ViT-S/16 78.6 0.69 1.39
Nereus-SAR-1 ViT-S/8 82.1 0.64 1.38
Nereus-SAR-1 ViT-B/8 83.6 0.63 1.37

Table 2. Comparison of k-NN performance of existing models and
ours across the three selected downstream tasks: (1) classification
accuracy on TenGeoP, (2) regression RMSE for significant wave
height prediction, and (3) regression RMSE for wind speed pre-
diction.

these models expect two-channel images as input. How-
ever, WV images are only available in single-polarization
(VV). In Table 2, the results for WV images are obtained
by simply duplicating the single-channel VV input to match
the expected dual-channel format.

For further evaluation, we also perform supervised fine-
tuning for existing SAR SSL models. A wide range of dif-
ferent methods were designed to perform Parameter Effi-
cient Fine-Tuning (PEFT) on pre-trained backbones, like
visual fine-tuning [28] or adapters [9, 45]. Most meth-
ods specifically aim at improving the trade-off between the

computational cost and performance degradation in fine-
tuning. Note, however, that most of the proposed fine-
tuning methods are supervised: in particular, they do not
lead to a fine-tuned module that is transferable across down-
stream tasks. This goes against the spirit of foundation
models, and would severely limit the applicability of such
fine-tuning approaches for downstream tasks with little an-
notated data.

Some recent studies developed PEFT methods specific
to geospatial foundation models [27, 42], and started to ex-
plore the challenge of self-supervised fine-tuning [29, 41].
Others, by contrast, developed supervised fine-tuning meth-
ods to address the specific case of cross-domain adaptation
by incorporating domain inductive bias for specific cases,
e.g. for multi-spectral [50], thermal [62], or RGB-Depth
[24] imagery.

As it is not the scope of this paper to design a radar-
specific adaptation module, we proceed as follows. For
ResNet backbones like MoCo and DeCUR, we perform full
fine-tuning. For SoftCon, the best performing ViT-based
model, we perform a classical LoRA fine-tuning on the
patch embedding and attention layers. Additionally, in
each case, we use a linear layer as the classification head
to probe model performance. This head is trained jointly
with the backbone adapters, using different learning rates.
We then compare these results to our self-supervised model
under the same evaluation protocol. It is important to note
that this setting places our model at a disadvantage, as
only the head parameters are trainable—resulting in signif-
icantly fewer parameters available to learn the task-specific
objective.

The fine-tuning results are shown in Table 3. Accuracies
on TenGeoP are improved by 10-25% for existing founda-
tion models and by 5-10% for our models. Similarly, the
RMSE for wave height and wind speed decreases by 0.05-
0.2 for existing models and by 0.1-0.3 for our models.

Our specialized foundation models consistently outper-
form existing foundation models on the three SAR WV
tasks, and the gap is especially large for the wave height
and wind speed regression (RMSE difference of 0.2-0.6).
This can be attributed, in part, to the fact that existing mod-
els were trained on different data, which leads to both sen-
sor and domain shifts. Notably, our training dataset con-
sists exclusively of oceanic SAR SLC (single-look com-
plex) images, whereas existing models have been predom-
inantly trained on SAR GRD (ground range detected) im-
agery over land. Future work could investigate the relative
impact of sensor versus domain shift in driving this perfor-
mance gap.

The smaller performance gaps between models on the
TenGeoP benchmark dataset suggest that TenGeoP may be
relatively simplistic as a benchmark and may lack suffi-
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cient discriminative power to effectively evaluate the perfor-
mance of self-supervised learning models for SAR imagery.
Notably, even with a simple linear probing head—i.e., solv-
ing a convex problem—we achieve results that equal the
current state-of-the-art in supervised learning on this task
[58].

For our models, we find that the best-performing one
on TenGeoP is the ViT-S/16, closely followed by ViT-B/8.
However, for the wave height and wind speed regression
tasks, larger models with smaller patch sizes perform
better. This likely results from TenGeoP classes being
primarily characterized by global image features, and being
therefore less sensitive to small-scale structures that are
better captured by models with smaller patch sizes. By
contrast, the other two tasks rely more heavily on local
texture information to accurately estimate geophysical
parameters.

Method Backbone TenGeoP SWH Wind

MoCo-FT ResNet50 86.5 0.77 1.80
DeCUR-FT ResNet50 81.9 0.82 1.93
Softcon-LoRA ViT-S/14 84.2 0.78 1.98
Softcon-LoRA ViT-B/14 85.1 0.79 1.95

Nereus-SAR-1 ResNet50 80.9 0.63 1.33
Nereus-SAR-1 ViT-S/16 89.0 0.57 1.34
Nereus-SAR-1 ViT-S/8 85.8 0.55 1.30
Nereus-SAR-1 ViT-B/8 88.3 0.54 1.29

Table 3. Linear probing accuracy of existing models (adapted to
the single WV polarization or fine-tuned with LoRA) and ours on
the three selected downstream tasks.

4. Discussion and Conclusion
In this study, we introduced a dynamic pruning methodol-
ogy for self-supervised training of an EO foundation model
on Sentinel-1 WV imagery. Given the high redundancy in-
herent in the dataset, our pruning strategy significantly ac-
celerates convergence.

Beyond efficiency gains, we find that dynamic pruning
also improves downstream performance. We attribute this
to the regularizing effect of resampling from a redundant
dataset, which helps avoid overfitting. From an optimiza-
tion standpoint, this insight suggests promising connections
to classical strategies—such as restart-based methods—that
have seen limited exploration in this setting [39, 40].

We also address a gap in existing EO foundation mod-
els by focusing on a modality—Sentinel-1 WV—for which
no pretrained model is well-suited. To support further re-
search, we release a benchmark framework tailored to this
modality, relevant for applications ranging from wind field

estimation to oil slick detection. We also release the weights
for Nereus-SAR-1, the first in a family of models designed
specifically for ocean observation using SAR imagery.

Finally, our findings emphasize the complexity of satel-
lite data, where varying acquisition modes result in di-
vergent data distributions. We show that models trained
across multiple modes do not necessarily generalize to un-
seen ones. In fact, for specialized modalities, unimodal
self-supervised models can outperform multimodal coun-
terparts while requiring significantly fewer computational
resources—further amplified by our pruning strategy.
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