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1. Implementation Details
MLLMs We used the HuggingFace implementations for
each of the MLLMs [8] and opted to use the instruct variants
of each model. For Molmo, we used the standard release of
Molmo 7B O and a 4-bit quantized version of Molmo 72B.
For Qwen 2.5-VL 7B, we used the public code release and
we used the 4-bit quantized version of Qwen 2.5-VL 72B.
For Llama 3.2 11B, we used the original release by Meta
and we used a 4-bit quantized version of Llama 3.2 90B.
All MLLMs were run on a single Nvidia H100 GPU. We
set the max new tokens to 800 tokens. We used the default
settings for Llama 3.2 and Qwen 2.5-VL and for Molmo we
specified a greedy sampling strategy for token generation.
The prompts that we used for each model in our zero-shot
and fine-tuning experiments are available in Table 1 in the
main paper.

Few-shot Details To construct few-shot splits for each of
our datasets, we randomly sampled K images for each tar-
get category from the dataset (i.e. 3 sets of images for
AAP and 1 set of images for xBD/RarePlanes), where K
is the number of shots that we are considering. We cre-
ated 10 seeds for each K-shot split, each consisting of dif-
ferent images and a varying number of annotations. For
RarePlanes, we trained our Faster RCNN using Detectron2
[9] for RarePlanes. The Faster RCNN has a ResNet-50 [4]
backbone and we used the ResNet 50 weights provided by
Detectron2 to initialize our model. We used the standard
configuration provided by Detectron2, modifying the im-
ages per batch to 2, the base learning rate to 0.0025, and the
ROI head batch size to 64. We trained each model on an
Nvidia A100 GPU for 1000 iterations, as we find this suffi-
cient for convergence. For AAP and xBD, we used MMDe-
tection [1] to train the Faster RCNNs. We used the stan-
dard COCO configuration for MMDetection and the avail-
able ResNet 50 pre-trained weights to initialize the model.

Few-shot experiments were conducted using DoRA [6]

with rank= 8 and α = 16. Molmo 7B-D models were
trained for 12 epochs at a learning rate of 1e−5 on each 16-
shot task. DoRA weights were merged only for inference,
with all inferencing being conducted on the full datasets.
Only the latest model checkpoint was saved and used for
inferencing. We allowed adaptations to both Molmo’s lan-
guage and vision components. We suspected that false
positives in the 0-shot model could be remedied by tailor-
ing model output to a few concise centerpoint annotations.
Given Molmo’s apparent lack of exposure to overhead im-
agery, the vision component was adapted on in order to en-
rich its overhead feature space and allow for slight domain
shift. For response generation, top-k, top-p, temperature,
and sampling were not used in order to limit the verbosity
of the responses and in turn, catastrophic hallucinations.

To produce trainable annotations, we convert the original
coco-formatted annotations of the RarePlanes [7] and Aerial
Animal Population [3] data sets to VQA-style annotations
[5] to be ingested by the model. To construct annotations
aligning with Molmo’s [2] training strategy, we randomly
sample from the template VQA point prompts it provides.
That is, each annotation’s prompt comprises our label in-
jected into template point prompts seen by Molmo during
its original training.

GSD Exploration Details To generate the tiles for our
various GSDs across the RarePlanes dataset, we get the
original row and column GSDs from the original image
metadata and re-scale each image using bi-linear interpola-
tion along both dimensions to match our target GSDs from
0.4 meters per pixel to 1.1 meters per pixel. We tile these
re-scaled images with 200 pixels of overlap and only keep
tiles where at least one annotation bounding box is at least
50% contained in a tile. If the re-scaled image is smaller
than the specified tile size, that image is skipped in our re-
sulting set of tiles for that GSD. Finally, for the set of tiles
with variable tile size for fixed spatial content, we take the
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initial 1120 pixels by 1120 pixels per tile at 0.4 meters per
pixel and re-scale each image to each of the larger GSDs.
For each tile-size and GSD, we used Molmo 72B with max
new tokens set to 600 tokens, providing each tile and text
prompt “Count the number of aircraft in the image.” We
then use the centerpoints from the centers of the re-scaled
bounding boxes to compare to the model’s predicted out-
put centerpoints, collapsing all labeled aircraft objects in
the RarePlanes annotations into one “aircraft” category.

2. Llama Model Outputs

As mentioned in the main paper, Llama 3.2 is unable to out-
put valid coordinates, despite the prompt explicitly asking
it to do so. Here are some sample outputs that it gave us:

1. The image shows a runway and a parking lot, with four
airplanes visible.
The coordinates of the airplanes are: [0.000000,
0.000000, 0.000000, 0.000000] [0.000000, 0.000000,
0.000000, 0.000000] [0.000000, 0.000000, 0.000000,
0.000000] [0.000000, 0.000000, 0.000000, 0.000000]

2. There are 3 airplanes in the image. The coordinates
of the airplanes are: [1] [1017, 1221, 1043, 1264] [2]
[1022, 1213, 1051, 1256] [3] [1048, 1226, 1057, 1271]

3. [0, 0, 0, 0.5][0.85, 1, 0.5, 1]

It does give valid outputs that are able to be parsed. How-
ever, the coordinates frequently make no sense in reference
to the underlying image. Most of the time, it scales the
coordinates from the range 0 to 1. However, even when
it does output coordinates in this format, it frequently does
not correspond to valid locations in the image. For instance,
the third output looks like it might be valid, however, these
points do not actually correspond to the planes in the image.
The most common output that we observed was similar to
the first output, where the model might get the correct num-
ber of planes (or might not) and will simply output a se-
quence of zeros for the coordinates, resulting in a complete
failure scenario. As we made adjustments to the prompt to
try to circumvent these issues, we found that Llama was dif-
ficult to adapt and had trouble following more detailed sys-
tem prompts. Note that these issues to do preclude Llama
from being used for other tasks that do not require precise
localization output, such as object counting, scene descrip-
tion, etc. However, our experiments indicate that without
fine-tuning, Llama is not a reliable localization model.

3. Additional Figures

The remainder of the figures in the supplementary illustrate
specific success and failure scenarios for various models
across each of the datasets.
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Figure 1. Image from xBD dataset with Molmo 72B labels (ground truth represented by green dots and predictions represented by red Xs).
This illustrates the common failure scenario that is discussed in the main text, where models will sometimes generate a sequence of many
detections in a line. We are uncertain what results in this behavior but we notice it more with small models.



Figure 2. Above: hallucinations resulting from using the prompt “Place a point on each {category} in the image”, with a top-p= 0.9,
top-k= 50, and temperature= 0.6. Below: reduced hallucinations resulting from using the prompt “Where are the {category}?”, and
without using top-p, top-k, and temperature. Red dots indicate predictions.



Figure 3. Illustration of an example from RarePlanes using Molmo 72B (ground truth represented by green dots and predictions represented
by red Xs). Here, the model successfully detects most aircraft in the scene, despite the terminal providing many distractors. It even detects
one of the two aircraft that appear at the edge of the image, suggesting that it is able to detect parts of planes.



Figure 4. Illustration of an example from RarePlanes using Molmo 72B (ground truth represented by green dots and predictions represented
by red Xs). Here, the model successfully detects all aircraft in the image, despite variations in size and orientation.



Figure 5. Illustration of an example from RarePlanes using Molmo 72B (ground truth represented by green dots and predictions represented
by red Xs). The model successfully predicts most planes in the image, despite the large number of targets and potential distractors. It misses
a plane that is in close quarters to other planes and it misses two planes that are partially obscured.



Figure 6. Illustration of a failure case on RarePlanes using Molmo 72B (ground truth represented by green dots and predictions represented
by red Xs). An example of a failure where the model detects the plane’s shadow as an additional plane. We noticed models making this
mistake in other datasets as well.

Figure 7. Zoomed in illustration of a success case on the Animal Population dataset using Qwen 2.5-VL 7B (ground truth represented by
green dots and predictions represented by red Xs). Note how difficult it is to distinguish the giraffes from the background, nevertheless,
Qwen successfully locates each one.



Figure 8. Zoomed in illustration of a success case on the Animal Population dataset using Qwen 2.5-VL 7B (ground truth represented
by green dots and predictions represented by red Xs). Qwen successfully locates the elephants in the image. While they initially appear
distinct, Figure 9 contains the zoomed out version of the image, where the elephants are no longer clear and are actually quite small relative
to the scene.



Figure 9. Full image from the Animal Population dataset with Qwen 2.5-VL 7B labels (ground truth represented by green dots and
predictions represented by red Xs).



Figure 10. Zoomed in image from the Animal Population dataset with Qwen 2.5-VL 7B labels (ground truth represented by green dots and
predictions represented by red Xs). This illustrates a common failure case where Qwen places a point on a group of animals, rather than
individually identifying each one. This substantially hurts the AP of the model.



Figure 11. Zoomed in image from the Animal Population dataset with Qwen 2.5-VL 7B labels (ground truth represented by green dots
and predictions represented by red Xs). This is a less severe failure case, more aligned with the types of mistakes one might expect to see,
where one individual in a group of animals is missed.



Figure 12. Image from xBD dataset with Molmo 72B labels (ground truth represented by green dots and predictions represented by red
Xs). This is an example of a scenario where the model was relatively successful. It definitely possesses the required knowledge to detect
buildings from an overhead angle. However, it misses certain buildings, especially when they are quite small, with some of them being
fully subsumed by the small dots that we placed on the image.



Figure 13. Image from xBD dataset with Molmo 72B labels (ground truth represented by green dots and predictions represented by red Xs).
Another scene in which Molmo was relatively successful. In this case, it again detected many of the homes, which are already relatively
small, mostly missing smaller buildings which appear to be sheds or garages.



Figure 14. Image from xBD dataset with Molmo 72B labels (ground truth represented by green dots and predictions represented by red
Xs). An exmaple of a failure scenario, where there are too many houses in the image for molmo to detect. It is worth noting that it does get
many of the buildings. However, we found that even with expanding the generated token limit, Molmo falls apart past a certain number of
objects in a given image, likely due to the distribution of object counts that it was trained on.



Figure 15. Image from xBD dataset with Molmo 72B labels (ground truth represented by green dots and predictions represented by red Xs).
Another example of a failure scenario, where in this case the model incorrectly segments a larger building into multiple smaller buildings.
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