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A. Mathematical Insight
A.1. Notations and Definitions
Datasets Notations and Definitions: Let Y ω

i
represent the

class (as a random variable) at the ith pixel of an image Xω

taken from domain ω , where ω → {S, T} denotes the source
or target domain, respectively. The random variable X

ω

i

represents the channel vector at the i
th pixel in the image

Xω , i.e., Xω

i
→ RCω , where Cω is the number of channels.

An observation of of the random variable Y
ω

i
is denoted as

y
ω

i
, and similarly, an observation of the random variable Xω

i

is denoted as xω

i
.

Let the set XS = {xS

i
}NS=HS→WS
i=1 represent the source

domain image, where XS → RCS→HS→WS is the set of
channel vectors for all pixels in the source image, with HS

and WS being the height and width of the image, respec-
tively. Similarly, let the set XT = {xT

i
}NT=HT→WT
i=1 repre-

sent the target domain image, where XT → RCT→HT→WT is
the set of channel vectors for all pixels in the target image.

The labels for the source domain are represented by the
set YS = {yS

i
}NS
i=1, where we assume the source domain

is fully labeled. For the target domain, the labeled samples
are represented by the set YT = {yT

i
}l
i=1, where l is the

number of labeled pixels and l ↑ NT .
Models Defentions : Let fε: the feature extractor
parametrized by ε

hεseg : the segmentation head parametrized by εseg
gεM : MAE head parametrized by εM

Then we can define the segmentation model and the gen-
erative model we have in our proposed method as follows :

P(yi | X; ε, εseg) = hεseg(fε(X), yi) (10)

The probability of class y at the i
th pixel given the entire

image X. By employing mean squared error (MSE) in the
generative component, we inherently assume the following
model :

X
T

i
= gεM (fε(XS)) + ϑ,

where ϑ ↓ N (0,!),

and ! → RCT→CT . (11)

A.2. Task Learning as Joint Likelihood
The segmentation, generative, and domain adaptation (DA)
tasks in the proposed method are governed by minimizing

the following loss function:

argmin
ε,εseg,εM

LTot(ϖDA,ϖMAE , . . .) = LSeg + ϖDALDA

+ ϖMAELMAE (12)

Here, LSeg denotes the multi-class cross-entropy loss, com-
puted on the labeled source domain and a limited number
of labeled target domain samples. The LDA term facilitates
domain alignment between the source and target domains,
while LMAE represents the mean squared error (MSE) used
in MAE method.

For clarity in this mathematical insight, we focus solely
on the impact of MAE learning on the segmentation task.
Therefore, we set ϖDA = 0 and ϖMAE = 1 in Equa-
tion (12). Hence

argmin
ε,εseg,εM

LTot(0, 1, . . .) = argmax
ε,εseg,εM

J(ε, εseg, εM ) (13)

Where J(ε, εseg, εM ) is the joint probabilty of the observed
source domain labels, YS , the few observed labels from
the target domain, YT , and the observed target domain im-
age XT , conditioned on the observed source domain image,
XS , and parametrized by the model parameters :

J(ε, εseg, εM ) = P(YS ,YT ,XT | XS ; ε, εseg, εM ) (14)

The joint distribution in Equation (14) can be factorized as
follows:

P(YS ,YT ,XT | XS ; ε, εseg, εM ) = P(YS | YT ,XT ,XS)

↔ P(YT | XT ,XS)

↔ P(XT | XS),
(15)

Assuming the conditional independence assumption
holds for the output quantities given the inputs, we have
Y

ω

i
↗ ϱ | Xω for the segmentation model, where ϱ repre-

sents any variable other than Y
ω

i
. Likewise, for the MAE

model, the condition X
T

i
↗ ϱ | XS applies for all ϱ not

equal to X
T

i
. Under these assumptions, the joint distribu-

tion in Equation (15) simplifies as follows:

P(YS ,YT ,XT | XS ; ε, εseg, εM ) = P(YS | XS ; ε, εseg)

↔ P(YT | XT ; ε, εseg)

↔ P(XT | XS ; ε, εM )
(16)



Utilizing the conditional independence assumption to
write Equation (16) on the pixel level :

J =
∏

n↑{1,...,NS}

P(ys
n
| XS ; ε, εseg)

↔
∏

i↑{1,...,l}

P(yT
i
| XT ; ε, εseg)

↔
∏

k↑{1,...,NT }

P(xT

k
| XS ; ε, εM ) (17)

A.2.1. Impact of Unlabeled Target Domain Sample Re-
construction on the Segmentation Task

Since our approach incorporates a few labeled samples from
the target domain alongside labeled data from the source
domain, the impact of these labeled target samples on the
segmentation task can be inferred through their direct influ-
ence on the decision boundaries of the segmentation model.
However, the use of the MAE loss has enabled the integra-
tion of unlabeled samples from the target domain. We are
specifically focused on investigating the impact of these un-
labeled samples on the segmentation task. To achieve this,
we will reformulate Equation (17) to distinguish between
the labeled and unlabeled pixels from the target domain.
Before doing so, it is essential to first highlight the follow-
ing product that appears in Equation (17).

P(yT
i
| XT ; ε, εseg)P(xT

k
| XS ; ε, εM ) (18)

According to the basic rule of conditional probability
and the conditional independence assumption, Expression
(18) can be written as follows:

P
(
y
T

i
, x

T

k
| {xT

r
}r ↓=k,XS ; ε̄ = [ε, εseg, εM ]

)

= P
(
y
T

i
| XT ; ε, εseg

)

↔ P
(
x
T

k
| XS ; ε, εM

)
(19)

In words, Expression (18) represents the joint probability
of Y T

i
and X

T

k
, parameterized by ε̄ = [ε, εseg, εM ], condi-

tioned on XS and all channel vectors of XT , excluding x
T

k
,

which we denote as {xT

r
}r ↓=k.

Substituting Equation (19) in Equation (17) and taking
the log we got :

log J =
∑

n↑{1,...,NS}

logP
(
y
S

n
| XS , ε, εseg

)

+
∑

i↑{1,...,l}

logP
(
y
T

i
, x

T

i
| {xT

r
}r ↓=i,XS , ε̄

)

+
∑

k↑{1,...,NT }\{1,...,l}

logP
(
x
T

k
| XS , ε, εM

)
.

(20)

To evaluate how this learning paradigm influences the
feature extractor during training, a key component of our
proposed method for jointly learning the segmentation and
MAE tasks, we will compute the partial derivative with re-
spect to ε. This approach is motivated by gradient-based
optimization methods, where the derivative is responsible
for updating the model parameters, enabling us to observe
how the feature extractor evolves and adapts throughout the
training process:

ςJ

ςε
=

∑

n↑{1,...,NS}

ς

ςε
logP

(
y
S

n
| XS , ε, εseg

)

+
∑

i↑{1,...,l}

ς

ςε
logP

(
y
T

i
, x

T

i
| {xT

r
}r ↓=i,XS , ε̄

)

+
∑

k↑{1,...,NT }\{1,...,l}

ς

ςε
logP

(
x
T

k
| XS , ε, εM

)

(21)

By utilizing the following “trick ” provided by [19]:

↘x, y, ς

ςε
logP(x|ε) = 1

P(x|ε)
ς

ςε
P(x|ε)

=
1

P(x|ε)
ς

ςε

(
∑

y

P(x, y|ε)
)

=
1

P(x|ε)
∑

y

ς

ςε
P(x, y|ε)

=
1

P(x|ε)
∑

y

P(x, y|ε)
(

1

P(x, y|ε)
ς

ςε
P(x, y|ε)

)

=
∑

y

P(x, y|ε)
P(x|ε)

ς

ςε
logP(x, y|ε)

=
∑

y

P(y|x, ε) ς

ςε
logP(x, y|ε).

(22)
Applying the trick in Equation (22) for the last term in

Equation (21), we got :

ςJ

ςε
=

∑

n↑{1,...,NS}

ς

ςε
logP

(
y
S

n
| XS , ε, εseg

)

+
∑

i↑{1,...,l}

ς

ςε
logP

(
y
T

i
, x

T

i
| {xT

r
}r ↓=i,XS , ε̄

)

+
∑

k↑{1,...,NT }\{1,...,l}

∑

yk

P(yk | xT

k
,XS ; ε̄)

↔ ς

ςε
logP(xT

k
, yk | XS ; ε̄) (23)

The final term in Equation (23) holds particular impor-
tance, as it demonstrates how our learning paradigm dynam-
ically adjusts the influence of unlabeled pixels on the classi-
fication process for each class. This adjustment is achieved



through the expression P(yk | xT

k
,XS ; ε̄), which functions

as a dynamic weighting mechanism. In the following, we
will further explain this dynamic weighting mechanism by
relating it to the definitions of our models introduced earlier.

A.2.2. Dynamic Weighting in terms of the Segmentation
Model

By applying the conditional probability rule and the con-
ditional independence assumption, the joint distribution
P
(
yk, {xT

r
}r ↓=k | xT

k
; ε̄
)

can be written:

P
(
yk, {xT

r
}r ↓=k | xT

k
; ε̄
)
= P

(
yk | XT ,XS , ε̄

)

↔ P
(
{xT

r
}r ↓=k | XS , ε̄

)

= h(f(XT ), yk)

↔
∏

r ↓=k

N (xT

r
; g(f(XS , r)),!).

(24)

P(yk | xT

k
,XS , ε̄)↔N (xT

k
; g(f(XS , k)),!) (25)

Now we can direclty link the weight P(yk | xT

k
,XS ; ε̄)

to our segmentation model h(f(.)) through marginalising
the joint distribution in Equation (24)

P(yk | xT

k
,XS , ε̄) =

∫
· · ·

∫

{xT
r }r →=k

h(f(XT ), yk)

↔ P
(
{xT

r
}r ↓=k | XS , ε̄

) ∏

r ↓=k

dx
T

r
. (26)

In order to write Equation (26) in a compact way, we let
Z = {xT

r
}r ↓=k such that Equation (26) can be written as

follows:

P(yk | xT

k
,XS , ε̄) = EZ↔P(Z|XS ,ε̄)

[
h(f(Z, xT

k
), yk)

]

(27)

Equation (27) demonstrates that the weighting mecha-
nism is closely linked to the segmentation model’s confi-
dence regarding the unlabeled pixels in the target domain. If
the model is incorrectly overconfident about these unlabeled
pixels, it can adversely affect the learning of the segmenta-
tion task. Conversely, when the model is correctly confident
about these unlabeled pixels, it enhances the model’s gener-
alizability over the target domain by effectively leveraging
the unlabeled samples in conjunction with the limited la-
beled ones.

B. Implementation Details
The experiments were conducted using the PyTorch frame-
work with the AdamW optimization algorithm [25]. A

learning rate of 10↗4 was used. Each experiment was re-
peated ten times for each datasets, with a unique random
initialization of the network for each run. In each exper-
iment, validation and testing were performed on datasets
sampled from the target domain, and the best model was
selected based on validation performance during training.
Both hyperparameters, ϖMAE and ϖDA, were empirically
set to a value of 1.

C. Inference Maps
C.1. C2Seg-AB
Fig. 4 displays segmentation inference maps for this dataset.
Consistent with the quantitative results in Tab. 1, our pro-
posed method performs comparably to PCS, with both
showing superior performance relative to other methods.
Notably, our method demonstrates improved segmentation
for classes like Surface Water and Mine, Dump, and Con-
struction Sites. It is worth mentioning that certain classes,
such as Street, experience low precision across all methods,
including ours.

C.2. FLAIR
Fig. 5 displays segmentation inference maps for this dataset,
highlighting that our approach achieves the most accurate
segmentation map compared to other methods. Notably,
our method demonstrates improved precision and recall for
classes such as Agricultural Land, Plowed Land, and Brush-
wood.

D. MAE-Based Generative Performance
To evaluate the generative performance of our proposed
model across different data modalities (MSI and HSI), we
train it exclusively on the generative task represented pri-
marily by LMAE until convergence.Specifically, this as-
sessment aims to measure the model’s ability to reconstruct
the target domain image sequence from the concatenated
source-target sequence, thereby encouraging the learning
of generalizable domain-invariant features. For this evalua-
tion, we employ a masking ratio of 50% for target domain
input images while keeping source domain images fully un-
masked to generate the source-target sequence.

D.1. HSI
We evaluated the trained model on the HSI modality us-
ing the C2Seg-AB dataset, varying the masking ratio of the
target domain images across 50%, 75%, and 100%, while
keeping the source domain images fully unmasked (0%
masking) across all experiments. To evaluate the recon-
struction performance both spatially and spectrally, Fig. 6
provides a visual assessment of spatial reconstruction qual-
ity, while Fig. 7 assess the reconstruction performance from
a spectral perspective. The results from both spatial and
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Figure 4. Comparative Segmentation Inference using the C2Seg-AB Dataset. Display includes (a) Ground Truth Mask, (b) Our Method,
(c) PCS, (d) Zero Shot, (e) GDA, (f) CDS, (g) MIC, (h) CIA UDA, (i) UDA ME BS, and (j) Colorbar.

spectral evaluations demonstrate strong reconstruction per-
formance, highlighting the effectiveness of the proposed
method. This outcome highlights the model’s ability to
capture informative features from one domain to aid re-
construction in another, promoting the learning of domain-
invariant features. Importantly, our proposed framework
extends MAE-based generative learning specifically to RS
foundation models across multiple modalities, including
HSI, which, as previously noted, has seen limited applica-
tion with MAE-based self-learning approaches. For addi-
tional visual evaluation please refer to the supplementary
material.

D.2. MSI
In a similar evaluation, we assessed the trained model on
the MSI modality using the FLAIR dataset across vari-
ous masking percentages for the target image, as shown

in Fig. 8. The model consistently achieves near-perfect re-
construction quality under different masking ratios, demon-
strating the flexibility and adaptability of our proposed
method across multiple data modalities.

E. Additional Ablation Study Results
Similar to Tab. 3 in terms of the baseline represented by the
second column, we observe that adding LMAE alone de-
grades performance compared to the baseline, which can be
attributed to the dynamic weighting mechanism discussed
in the mathematical insight section. This mechanism de-
pends on the model’s predictions for unlabeled samples
in the target domain, leading to potential issues when the
model is mistakenly confident about these samples. How-
ever, combining LMAE with LDA yields the best perfor-
mance, consistent with the previously described synergy be-
tween these two components.
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Figure 5. Comparative Segmentation Inference using FLAIR Dataset. Display includes (a) Ground Truth Mask, (b) Our Method, (c) PCS,
(d) Zero Shot, (e) GDA, (f) CDS, (g) MIC, (h) CIA UDA, (i) UDA ME BS, and (j) Colorbar.
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Figure 6. Generative task evaluation on HSI modality with C2Seg-AB dataset, showing original, masked, and reconstructed images across
three target domain masking levels.

Table 4. Contribution of each component in our proposed frame- work to overall performance on the C2Seg-AB dataset.

Classes LSeg LSeg + LDA LSeg + LMAE LSeg + LDA + LMAE (Ours)

Surface water 0.4927 0.4971 0.4718 0.5138
Street 0.2400 0.3021 0.1360 0.3207
Urban Fabric 0.4555 0.6464 0.4950 0.6476
Industrial, commercial and transport 0.5101 0.7295 0.5256 0.7376
Mine, dump, and construction sites 0.5049 0.5611 0.3623 0.5949
Artificial, vegetated areas 0.4314 0.6504 0.4136 0.6615
Arable Land 0.4894 0.8324 0.4725 0.8382
Permanent Crops 0.2434 0.2569 0.1130 0.2358
Pastures 0.5354 0.6311 0.4016 0.6451
Forests 0.5686 0.6144 0.5022 0.6247
Shrub 0.3960 0.5305 0.2924 0.5404
Open spaces with no vegetation 0.0956 0.0140 0.0231 0.0217
Inland wetlands 0.3783 0.4423 0.2665 0.4503

MA(Avg) 0.4950 0.6252 0.3930 0.6381
MA(Std) 0.0621 0.0220 0.0654 0.0208
mIoU (Avg) 0.2704 0.3741 0.2245 0.3835
mIoU (Std) 0.0327 0.0174 0.0331 0.0161
mF1 (Avg) 0.4109 0.5160 0.3443 0.5255
mF1 (Std) 0.0420 0.0187 0.0482 0.0186



 

(a) 50% Target Domain Masking

 

(b) 75% Target Domain Masking

 

(c) 100% Target Domain Masking

Figure 7. Mean and standard deviation of the spectral distribution for the remaining classes not covered in the main text, evaluated for
masked pixel classes in the target image at three different masking ratios using our MAE learning approach.
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Figure 8. Generative task evaluation on MSI modality with FLAIR dataset, showing original, masked, and reconstructed images across
three target domain masking levels.
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