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Abstract

Scene Graph Generation (SGG) is a visual understand-
ing task that describes a scene as a graph of entities and
their relationships, traditionally relying on spatial labels
like bounding boxes or segmentation masks. These require-
ments increase annotation costs and complicate integration
with other modalities where spatial synchronization may
be unavailable. In this work, we investigate the feasibil-
ity and effectiveness of scene graphs without location in-
formation, offering an alternative paradigm for scenarios
where spatial data is unavailable. To this end, we pro-
pose the first method to generate location-free scene graphs,
directly from images, evaluate their correctness and show
the usefulness of such location-free scene graphs in several
downstream tasks. Our proposed method, Pix2SG, models
scene graph generation as an autoregressive sequence mod-
eling task, predicting all instances and their relations as
one output sequence. To enable evaluation without location
matching, we propose a heuristic tree search algorithm that
matches predicted scene graphs with ground truth graphs,
bypassing the need for location-based metrics. We demon-
strate the effectiveness of location-free scene graphs on
three benchmark datasets and two downstream tasks — im-
age retrieval and visual question answering showing they
can achieve competitive performance with significantly less
annotations. Our findings suggest that location-free scene
graphs can still be generated and utilized effectively without
location information, thus opening new avenues for scal-
able, structured and efficient visual representations, such
as for multimodal scene understanding by reducing depen-
dency on modality-specific annotations. The code will be
made available upon acceptance. Our code is available at
https://github.com/egeozsoy/LF-SGG.

1. Introduction

Humans have an innate ability to quickly abstract and in-
terpret visual information, understanding complex scenes

almost instantaneously. This involves recognizing individ-
ual objects and comprehending the relationships between
them. In the field of computer vision, scene graph gen-
eration (SGG) has emerged as a powerful structured rep-
resentation to emulate this capability, representing a scene
as a graph where nodes correspond to entities and edges
capture their relationships. To our knowledge, all previous
methods [6, 21, 29, 33–35, 38–40, 46, 47] localize every
node in the image and thus require object locations, such
as bounding boxes or segmentation masks, in some part of
their pipeline. This location information is indeed crucial
for certain tasks, particularly those requiring precise spatial
understanding, such as detailed object localization. How-
ever, the annotation for such scene graphs is costly, and the
reliance on spatial data can hinder integration with other
modalities—such as audio, text, or other signals, where syn-
chronized spatial annotations are often unavailable. The
annotation for such scene graphs is costly as it consists of
two sub-tasks, scene graph annotation and bounding box or
mask annotation. For the creation of the bounding box la-
bels, the necessary time investment [30] has been reported
as 42 seconds for a single bounding box, which breaks down
into drawing (25.5 sec), quality verification (9 sec), and
coverage verification (7.8 sec). The estimated workload to
create location labels for the Visual Genome dataset [16]
is substantial, amounting to approximately 1,993 person-
days. One line of work that successfully reduces this anno-
tation cost are weakly supervised methods [28, 45], which
infer location from pre-trained detectors. However, they do
not inherently solve the problem of dependency on location
data. These methods still depend on the availability of a
robust object detector that can accurately localize entities
within the scene, which can be limiting in many domains.

We believe, even without any object locations, a scene
graph can be a valuable and informative structured descrip-
tion of a scene, serving as a lightweight representation that
could facilitate multimodal fusion. A location-free scene
graph can be used to tackle many downstream tasks such as
image retrieval, visual question answering, or image cap-
tioning [8, 9, 12, 14, 15, 43, 48]. To this end, in this work,
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Figure 1. In the task of location-free scene graph generation, no location information such as bounding boxes or segmentation masks are
available during training or validation. We design a new method, Pix2SG, leveraging autoregressive language modeling for congruent
scene graph predictions, and a heuristic tree search algorithm for scene graph matching necessary for evaluation.

we want to answer the question if location information is
essential for scene graphs and explore the potential of gen-
erating and utilizing scene graphs without location informa-
tion, using our Pix2SG method the first location-free scene
graph generation method, which does not rely on any spatial
information throughout the entire pipeline. Location-free
SGG differs fundamentally from both weakly supervised
methods and tasks like image captioning. It predicts rela-
tionships between entities without anchoring them to spe-
cific pixel coordinates, fully decoupling scene understand-
ing from spatial data. Unlike image captions, which are
free-form, ambiguous and can lack granularity, location-
free SGG provides a structured graph output, which is more
suitable for tasks requiring precise understanding of inter-
object relationships. However, location-free scene graph
generation presents unique challenges. Traditional SGG
methods rely on object locations to identify and extract en-
tities, which becomes infeasible without spatial data. With-
out per node location information, a new representation is
required to distinguish between multiple instances of the
same class. Additionally, evaluating location-free scene
graphs is complex, as current metrics based on spatial over-
laps (e.g., IoU) are not applicable. This comparison be-
comes computationally expensive, leading to an NP-hard
graph-to-graph matching problem when multiple instances
are involved.

To address these challenges, we propose a set of inno-
vative solutions that enable effective and accurate location-
free SGG. First, we design a novel transformer-based se-
quence generation method that does not rely on location
annotations at any stage, including training or validation.
This method is designed to handle the complexities of a
scene and produce a corresponding scene graph, abstracting
spatial information into relational and semantic descriptors

such as ”close,” ”in front,” or ”over.” Even without precise
pixel-wise location information, our approach maintains the
essential spatial context necessary for understanding object
relationships and provides a useful structured description
of the scene. To overcome the issue of differentiating be-
tween multiple instances of the same object class, our model
explicitly predicts unique object identifiers, directly differ-
entiating the instances from each other, without relying on
location data. Evaluating location-free scene graph genera-
tion requires a novel approach, as traditional metrics based
on spatial overlaps are no longer applicable. We design a
task-specific efficient heuristic tree search algorithm to the
NP-hard [11] problem of matching two graphs, providing a
task-specific approximate solution particularly in scenarios
involving multiple instances of the same object class. Ex-
tensive experiments on the PSG [42], Visual Genome [16]
and 4D-OR [23] datasets demonstrate the performance of
our proposed model on this new task. Our method outper-
forms most existing approaches, even those that rely heav-
ily on location data, and demonstrates competitive perfor-
mance on key downstream tasks such as image retrieval and
Visual Question Answering (VQA).
In summary, we make the following major contributions:
• We identify the key challenges of location-free SGG, in-

cluding the difficulty of entity identification, instance dif-
ferentiation, and the limitations of traditional evaluation
metrics in the absence of spatial data.

• We develop a novel transformer-based sequence genera-
tion method, which effectively addresses these complexi-
ties without using location information, enabling accurate
relationship prediction and multi-instance differentiation.

• We design and implement a heuristic tree search algo-
rithm for evaluation, approximately solving the NP-hard
problem of graph matching, enabling the evaluation of
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location-free scene graphs.
• We validate our method through extensive experiments

on three scene graph generation datasets, PSG, Visual
Genome and 4D-OR, and on two downstream tasks (im-
age retrieval and VQA).

2. Related Work

2.1. SGG with Location Supervision

Previous methods for SGG have typically relied on two-
stage architectures. The first stage consists of an object de-
tector, often a pretrained Faster-R-CNN model [26]. The
detected localized objects are used as proposals for the
scene graph. The proposed objects and visual relationships
between them are then classified in the second stage of the
architecture, which can take the form of Iterative Message
Passing [40, 45], Graph Neural Networks [21, 37, 39, 41,
47], and Recurrent Neural Networks [33, 46]. Lately, some
works have tried to move away from this paradigm towards
end-to-end approaches [6, 29, 35, 42], closely integrating
the generation of localized objects and their relationships.
These methods are sometimes described as detection-free
because they omit an explicit object detector, but they still
train to localize the entities in the output scene graph. In
contrast, our approach eliminates the need for location data
entirely, making it applicable to a broader range of domains,
including those where location annotations are sparse or
non-existent.

2.2. Weakly-Supervised Scene Graph Generation

While some works have attempted to reduce reliance on
location data through weak supervision, these approaches
still have significant limitations. Zareian et al. (VSP-
Net [45]) take object proposals from a pretrained object de-
tector, build them into a semantic bipartite graph as a dif-
ferent formulation of a scene graph and classify and refine
the entities through message passing. Shi et al. [28] use a
weakly-supervised graph matching method to match object
proposals from a pretrained object detector to the location-
free scene graph labels. This matching generates a localized
scene graph as a pseudo-label to train conventional fully-
supervised SGG methods. Other methods utilize natural
language from image captions as a weak supervision source,
matching linguistic structures to object proposals that again
come from pretrained object detectors [20, 44, 48]. We ar-
gue that relying on pretrained object detectors assumes the
availability of a robust detector for the targeted domain, po-
tentially limiting the applicability of WS-SGG methods.

While this approach does not require location labels in
the scene graph datasets itself, a dataset from the same
domain that contains location labels for all relevant ob-
jects is still required to pretrain the object detector. Shi
et al. [28] notice a considerable domain gap for the detec-

tor pre-training. This manifests in subpar performance if
Faster-R-CNN is pretrained on Open Images [18] and ap-
plied to Visual Genome [16] data, although both contain
natural images. This issue becomes even more apparent
when SGG is attempted in domains where large-scale im-
age datasets are not readily available, such as the medical
domain [23]. In contrast, location-free scene graph genera-
tion bypasses the need for such detectors altogether, offer-
ing a more generalizable solution across different domains.

2.3. Autoregressive Decoding

In response to the challenges posed by generating scene
graphs without location data, we turn to autoregressive de-
coding [1, 3, 4, 7]—an approach that has proven effective
in natural language processing and object detection—to se-
quentially predict relationships and entities, offering a ro-
bust alternative to traditional methods. We argue that we
can leverage the advantages of autoregressive decoding also
in the field of SGG, where there are significant interdepen-
dencies in the semantic structure of the scene graph, which
can profit from more congruent sequential predictions.

3. Method

In this section, we introduce our novel architecture
(Pix2SG) to generate location-free scene graphs without
any reliance on location data, as well as our heuristic
tree search-based matching algorithm that enables objective
evaluation of location-free scene graphs.

3.1. Problem Formulation

Location-free scene graph generation is defined as the task
of predicting a scene graph from a given image I without
utilizing location information. The output is a graph G =
(V,E), where V represents to the entity nodes, and E to
the pairwise relationships between entities. To objectively
evaluate the predicted scene graph G, it must be matched to
the ground truth graph G→. This matching is defined as

M (G,G→) = Gm (1)

where Gm is the mapped graph prediction after fitting G to
G→. The evaluation metric Recall@K RK (Gm, G→) is then
computed between Gm and G→. Unlike conventional SGG,
this formulation does not rely on location information, mak-
ing it a more generalized and challenging variant of scene
graph generation.

3.2. Proposed Solution

We introduce Pix2SG as the first architecture designed
specifically for location-free SGG, drawing inspiration from
Pix2Seq [4]. Pix2SG employs an autoregressive approach,
a well-established paradigm in natural language process-
ing, to predict entities, their instances, and pairwise rela-
tionships directly from an image. The model sequentially
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Figure 2. Comparison of existing location-based scene graph an-
notations to location-free scene graphs with instance identification
and mapping to the graph representation.

predicts one token at a time until the entire scene graph is
generated, as illustrated in Fig. 3. This autoregressive for-
mulation allows the model to capture dependencies between
tokens, improving the accuracy of predictions.
Vocabulary. To enable autoregressive sequence generation
for scene graphs, we define a vocabulary of tokens that
uniquely identify all entities and predicates. Each entity
is represented by two tokens: one for the entity class and
another for the entity instance, allowing differentiation of
entities of the same class within an image. Predicates are
represented by a single token predcls. A relationship be-
tween two entities is thus encoded as a quintuple:

(subcls, subidx, objcls, objidx, predcls) (2)

where subcls and objcls represent the entity class and subidx
and objidx the instance ids of the subject and object.
Ground Truth Sequence Generation. To train our pro-
posed sequence generation model, we convert a scene graph
label G→ into a sequence of tokens from our vocabulary.
This SG-sequence will be used in both the training and in-
ference of our method. Scene graphs are first decomposed
into individual quintuples as visualized in Fig. 2, and then
these quintuples are concatenated in random order to form
the SG-sequence. Entity IDs are assigned in ascending or-
der to instances of the same class, ensuring consistent iden-
tification across the sequence. Our evaluation method is de-
signed to be invariant to the order of quintuples and instance
IDs, thereby eliminating ambiguities during validation.
Network. Our model architecture, depicted in Fig. 3, be-
gins with an image encoding step that produces a flattened
representation of the visual features. We extend the flat-
tened image information with a positional encoding to al-
low the model to discern spatial information within the fea-
ture map. The flexibility of our approach allows us to use
any feature extraction backbone, and does not restrict us
to approaches trained for object detection or segmentation.

During the decoding phase, the model uses the flattened im-
age feature and a start token as inputs to generate the first
output token. Each subsequent token is generated autore-
gressively, with the predicted tokens being appended to the
sequence and used as input for the next prediction. This pro-
cess continues until the entire output sequence, representing
the scene graph, is complete (see. Fig. 2).
Inference. For inference, tokens are typically selected
based on confidence values. However, this can lead to rep-
etition issues in the SG-sequence. To mitigate this, we em-
ploy nucleus sampling [13], which introduces controlled
randomness into token selection. During experiments, we
generate a fixed number of tokens and convert the results
into an output of N SG-quintuples (Eq. 2) with N defining
the number of total relations. The autoregressive approach
already encourages predicting the most prominent relation-
ships first, before predicting more specific ones later in the
sequence. Additionally, our model can predict a ”stop to-
ken”, to stop the generation when the graph is sufficiently
detailed, a behavior learned from the training data, similar
to practices in location-based SGG and image captioning.

3.3. Objective Evaluation Process

Objective evaluation in location-free SGG is challenging
due to the complexity of correctly matching predicted scene
graphs with ground truth graphs, particularly when multiple
instances of the same class are present in a scene. As illus-
trated in Fig. 4, the task of graph matching is not straight-
forward; node identification has multiple possible solu-
tions, and accurate matching requires considering the entire
graph’s structure. Existing approaches, such as exhaustive
search, are computationally expensive, while the Hungarian
matching algorithm [17] does not adequately capture the re-
lational context needed for accurate graph matching. There-
fore, we propose a novel algorithm (Alg. 1) to approximate
an exhaustive search with a focus on matching quality, com-
putational efficiency, and flexibility. Our proposed algo-
rithm M↑ (G,G→, B) = GB

m, uses a tree search approach
with a branching factor B to control the depth of the search.
To compute the overlap between graph nodes, we first ex-
amine the respective local one-hop neighborhoods of the
nodes, represented as a list of (predicate, entity class) tu-
ples. We calculate how many of these tuples are the same
for both nodes, requiring both the predicate and the entity
classes to match. This overlap score is then normalized by
the node degree to ensure fairness across nodes with vary-
ing connectivity. For B = 1, the algorithm performs greedy
matching, mapping each predicted entity to the ground truth
entity with the highest local overlap. For B > 1, the algo-
rithm explores multiple branches, representing alternative
mappings, and recursively searches until all instances are
matched. When B → N , where N is the number of in-
stances of the most common entity class in the ground truth,
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Figure 4. Illustration of the scene graph matching problem. Ground truth scene graph and prediction have to be correctly matched for the
evaluation. A suboptimal matching can obscure the model actual performance.

the algorithm performs an exhaustive search, which guaran-
tees finding the optimal solution. The result of our heuristic
tree search is a set of graph matches between prediction and
ground truth, and we subsequently select the match produc-
ing the highest evaluation metric as visualized in Fig. 4. We
then use this matching to convert G to Gm.

4. Experiments

4.1. Datasets

Visual Genome (VG). The most frequently used scene
graph dataset is VG [16] and it is considered as one of
the main benchmarking datasets for SGG. As most previous
works [35], we use a split of VG with the 150 most frequent
objects and 50 predicates. While conventionally PredCls,
SGCls, and SGGen are used as metrics, none are applica-
ble to the case of location-free SGG. Instead, we evaluate
all approaches with our proposed metric, where the recall
is calculated directly by matching and comparing the pre-
dicted scene graph to the ground truth scene graph.

Panoptic Scene Graph Dataset (PSG). PSG [42] is a more
recent dataset, designed for panoptic scene graph genera-
tion, where location information is not provided as bound-
ing boxes, but as more accurate segmentation masks. Merg-
ing aspects of COCO and Visual Genome (VG), PSG con-
sists of 49k images, annotating 133 objects and 56 unique
predicates. They address some shortcomings of Visual
Genome, such as redundant class and predicate labels, an-
notation of trivial relationships as well as duplicate local-
izations. The improvements over Visual Genome make it
an interesting benchmark for evaluating scene graph gener-
ation.

4D-OR. 4D-OR [23] is a surgical scene graph dataset. Un-
like VG and PSG, which are sparse in their annotations, 4D-
OR includes dense annotations, enabling the calculation of
precision in addition to recall. As it includes images from
multiple views per scene, it allows us to demonstrate the ex-
tension of our method for multiple image inputs per scene.
Finally, as the dataset size is an order of magnitude smaller
than VG and PSG, it allows us to evaluate the performance
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Algorithm 1 Heuristic Tree Search (HTS)
Input: gt graph y, predicted graph ŷ, branching factor B
Output: best mapping mbest

function HTS(y, ŷ, B,m)
y inst ↑ instance from y with highest node degree
ŷ insts ↑ instances from ŷ with same class as y inst
y nbhd ↑ connected nodes and edges of y inst
for ŷ inst in ŷ insts do

ŷ nbhd ↑ connected nodes and edges of ŷ inst
overlaps ↑ append |y nbhd ↓ ŷ nbhd|/|y nbhd|

end for

ŷ insts ↑ ŷ insts sorted by overlaps
M ↑ ⊋ set for branched mappings mi

for i = 0 : B do mi ↑ m ↔ (y inst ↗↘ ŷ insts[i])
if y\y inst == ⊋ then M ↑ M ↔mi

else M ↑ M↔ HTS(y\y inst, ŷ\ŷ insts[i], B,mi)
end if

end for

return M

mbest ↑ select highest recall from HTS(y, ŷ, B,⊋)

of our method in lower data regimes.

4.2. Downstream Tasks

Image Retrieval. We assess the utility of our location-free
scene graphs in the task of image retrieval, specifically us-
ing the Sentence-to-Graph Retrieval (S2GR) methodology
introduced by [34]. S2GR first converts image captions into
scene graphs, and learns to match them with image scene
graphs. The goal is to find the correct image, given an image
pool of 1000 or 5000 images, measured using R@20 and
R@100. This task is deliberately designed to avoid using
image features, and instead only focuses on the graphs. We
follow their implementation very closely, and only replace
their image scene graphs by our own location-free scene
graphs generated using Pix2SG VIT-L.
VQA. We further evaluate location-free scene graphs for the
task of visual question answering. Concretely, we use the
COCOVQA [2] dataset, which consists of multiple question
answer pairs for each image. While existing methods rely
directly on image features and supervised training, our task
is zero-shot, and does not use any labeled data for VQA.
We start by using a SGG method to compute scene graphs
for the images, and then feed the scene graphs as text (list
of triplets) into a Large Language Model (LLM) as a part
of the prompt for question answering. We use the following
prompt: ”Given is the following scene graph for an image:
<SG>. Answer the following benchmark question. If you
are unsure, make an educated guess. Don’t give explana-
tions, your output will be automatically evaluated. You try
to maximize your score on the benchmark. Answers mostly
consists of one or two words, be concise. Question: <Q>”,

where we replace <SG> and <Q> with the respective im-
age scene graph and question. This way, an existing LLM
can be directly utilized for reasoning about an image. We
evaluate the accuracy of the SGG methods on all categories,
and the three subcategories, open end, number, and yes/no.

4.3. Implementation details

We use both EfficientNet [31] pretrained on Imagenet [27]
as well as Vision Transformer [10] with contrastive pretrain-
ing [25] as image encoder backbones. We resize the images
to match the input dimensions of the backbones. In 4D-OR,
the four multi-view images per scene are processed individ-
ually by the feature extraction backbone, then the feature
maps are flattened and concatenated to build the input se-
quence. We use pix2seq [4] as the starting point of the au-
toregressive sequence modeling implementation. We use a
categorical cross-entropy loss, with the entire vocabulary as
target classes, and optimize our model with AdamW [22]
and a constant learning rate of 4 ≃ 10↓5 with weight de-
cay of 1 ≃ 10↓4. The batch size is set to 16 in all our
experiments and we train our methods for 200 epochs, em-
ploying early stopping. We use a Transformer [36], with
a hidden size of 256, eight attention heads, six encoding,
and two decoding layers. Unless otherwise specified, we
predict 300 relations using nucleus sampling [13] with a
p-value of 0.95 and pick the top K unique predictions for
Recall@K. We set the branching factor B of our proposed
heuristic three-matching algorithm to 3 for all the validation
experiments except when indicated otherwise. For the base-
line methods on PSG, Visual Genome, and 4D-OR, we use
the implementations provided by [42], [32] and [23] re-
spectively. Finally, we provide an efficient implementation
of our Heuristic Tree Search based evaluation algorithm in
C++, with a sub-second run time for most samples using
three as Branching-factor B. We empirically motivate the
choice of B in Sec. 4.5 and Fig. 7. We use Vicuna 13B
variant[5] as the zero-shot LLM for the VQA task. All of
our experiments are done on a single NVIDIA A40 GPU.

4.4. Results

Panoptic Scene Graph Dataset (PSG). As we introduce
a new task and a new metric, we first reevaluate exist-
ing methods trained on the task of SGG with segmenta-
tion masks, with our location-free SGG evaluation method.
While their reliance on masks makes them not directly com-
parable to our method in the task of location-free SGG, we
still provide these results as a rough but valuable guideline.
We then evaluate our approach, Pix2SG, which is trained
and evaluated without any location labels. We present these
results in Tab. 1. As we are the first and only method to not
require location information at any stage, our method and
results serve as the first baseline for the new task of location-
free SGG. While using much less annotations, Pix2SG out-
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Table 1. Location-free SGG results of different SG models at R@k
on PSG dataset. Checkmarks indicate no mask supervision was
used during model training. B5, B7, VIT-B, VIT-L represent the
corresponding EfficientNet and Vision Transformer backbones we
used in our model.

Model Location-free R@20 R@50 R@100

IMP [40] 25.38 29.46 31.06
GPSNet [21] 25.96 30.03 31.91
PSGFormer [42] 26.10 31.47 34.75
MOTIFS [46] 30.50 34.68 36.30
VCTree [33] 31.72 36.28 37.99
PSGTR [42] 39.25 43.95 44.11

Pix2SG B5(Ours) ↭ 29.07 34.63 37.00
Pix2SG B7(Ours) ↭ 30.66 34.28 35.92
Pix2SG VIT-B(Ours) ↭ 33.35 38.10 39.93
Pix2SG VIT-L(Ours) ↭ 35.54 40.40 41.72

Table 2. Location-free SGG results of different SG models at R@k
on Visual Genome dataset. B5, B7, VIT-B, VIT-L represent the
corresponding EfficientNet and Vision Transformer backbones we
used in our model.

Model Location-free R@20 R@50 R@100

IMP [40] 21.66 30.78 37.07
SS-R-CNN [35] 22.09 26.43 28.57
SGTR [19] 23.62 30.38 34.85
RelTR [6] 25.86 30.99 33.31
VCTree [33] 27.06 35.59 41.21
Transformer [34] 28.79 37.81 43.69
MOTIFS [46] 29.02 38.08 43.64

Pix2SG B5(Ours) ↭ 19.32 23.59 25.47
Pix2SG B7(Ours) ↭ 21.51 24.81 26.66
Pix2SG VIT-B(Ours) ↭ 22.10 25.65 28.64
Pix2SG VIT-L(Ours) ↭ 22.98 26.92 30.05

Table 3. Location-free SGG results on 4D-OR dataset. B5 and
B7 represent the corresponding EfficientNet backbones we used
in our model.

Model Location-free Temporality Prec. Rec F1

4D-OR baseline [23] 0.68 0.87 0.75
LABRAD-OR [24] ↭ 0.87 0.90 0.88

Pix2SG B5(Ours) ↭ 0.88 0.92 0.90
Pix2SG B7(Ours) ↭ 0.89 0.94 0.91

Table 4. Image retrieval results on Visual Genome. Gallery size
refers to the number of images in the image pool from which one
image is retrieved.

Gallery Size 1000 5000

Model Location-free R@20 R@100 R@20 R@100

MOTIFS [46] 20.8 59.2 05.2 21.3
VCTree [33] 19.1 55.5 05.1 20.3

Pix2SG VIT-L(Ours) ↭ 38.3 73.9 12.7 39.8

Table 5. Visual Question Answering results on COCOVQA [2].

Model Location-free Open. Num. Yes/No Overall

IMP [40] 26.65 32.17 66.44 42.32
PSGTR [42] 29.03 32.58 67.34 43.89

Pix2SG VIT-L(Ours) ↭ 28.27 32.23 67.62 43.57

Table 6. Effect of nucleus sampling with a p-value of 0.95 on
VG compared to conventional maximum likelihood selection for
location-free SGG.

Sampling R@20 R@50 R@100

Maximum Likelihood 19.05 21.18 23.19
Nucleus [13] 21.51 24.81 26.66
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Figure 7. Ablation of Branching factor with B = 3 providing a
good trade-off between speed and matching performance.

performs every method except PSGTR [42], validating our
location-free scene graph generation architecture. In addi-
tion to the quantitative results, we also provide qualitative
results in Fig. 5, and in the supplementary material visualize
the attention maps for three quintuple predictions, illustrat-
ing that our model attends to relevant parts of the image for
predicting relationships, acting as a sanity check.
Visual Genome (VG). Similar to PSG, we also reevaluate
existing methods trained on the task of SGG with bound-
ing boxes with our location-free evaluation method. While
the results are again not directly comparable, they pro-
vide an additional data point. We present these results in
Tab. 2. We see that without location supervision, Pix2SG
performs comparatively worse on VG than on PSG. We
think the discrepancy is mainly caused by lower quality and
decreased consistency of the scene graph annotations on Vi-
sual Genome, and argue that, as our autoregressive formula-
tion can exploit interrelation dependencies between entities,
it thrives where label consistency is maintained.
4D-OR. As the evaluation proposed in 4D-OR [23] is ap-
plicable to our method, we directly compare our method to
the existing results in Tab. 3. We not only significantly im-
prove upon the existing single frame baseline, from 75%
F1 to 91% F1, we even outperform the SOTA, which uti-
lizes both visual and temporal information. These results
not only support our theory regarding the importance of la-
bel consistency, but also validate our approach in a different
and unique domain, which signifies the transferability and
adaptability of Pix2SG. Importantly, we achieve this with-
out using bounding boxes, depth, or 3D point clouds, which
are all used by the existing methods. We provide qualitative
results for 4D-OR in Fig. 6.
Image Retrieval. In the task of image retrieval, Pix2SG
outperforms existing methods by a large margin, even
though it uses less labels during training, as can be see
in Tab. 4. This supports our motivation of introducing
location-free SGG, as they can be just as useful as location
based scene graphs for some downstream tasks.
VQA. We present the results on the task of zero shot VQA
in Tab. 5. We again observe that our method performs very

comparable to both location based scene graph generation
methods. This again supports the wider use of location-free
SGG for downstream tasks not directly requiring accurate
pixel location information.

4.5. Ablation Studies

We perform ablation studies to validate the performance of
our evaluation method, as well as to demonstrate the impor-
tance of nucleus sampling. In Fig. 7, we evaluate five dif-
ferent branching factors for our tree search-based matching
on the four baseline methods, IMP, VCTree, Motifs, Trans-
formers and Pix2SG on Visual Genome. The results show
that our algorithm converges at B = 3, providing a good
balance between speed and matching performance. We,
therefore, set B to 3 in all other experiments. In Tab. 6,
we show the importance of nucleus sampling by comparing
it against always choosing the token with the highest prob-
ability. By reducing repetition and increasing variance, it
leads to significantly higher recall in all thresholds.

4.6. Limitations

Our method, Pix2SG, excels in generating scene graphs
without spatial data, offering a scalable and annotation-
efficient alternative to traditional approaches. While this ca-
pability broadens its applicability, it may not fully address
tasks requiring precise localization, such as object detection
or fine-grained spatial reasoning. This reflects our design
choice to prioritize reduced annotation costs, tailoring it to
scenarios where spatial precision is less critical.

5. Conclusion

In this work, we introduced the first location-free scene
graph generation method, Pix2SG, to generate scene graphs
without relying on spatial data at any stage. By leveraging
autoregressive sequence modeling, Pix2SG achieves com-
petitive results on standard benchmarks, even in the absence
of location information. To facilitate evaluation, we propose
an efficient heuristic tree search algorithm that enables the
robust assessment of location-free scene graphs. Our find-
ings in this work demonstrate that location information is
not a requirement for generating useful and accurate scene
graphs. This opens up new opportunities for applying SGG
in contexts where location data is either unavailable, in-
complete, or too costly to annotate. By decoupling scene
graph generation from the need for location information,
our approach paves the way for integrating visual scene un-
derstanding with other modalities, such as text, audio and
other signals, in multimodal learning frameworks, broaden-
ing the applicability of SGG to a wider range of domains,
and make it more accessible and scalable, particularly in
resource-constrained environments.
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[23] Ege Özsoy, Evin Pınar Örnek, Ulrich Eck, Tobias Czempiel,
Federico Tombari, and Nassir Navab. 4d-or: Semantic scene
graphs for or domain modeling. In Medical Image Com-
puting and Computer Assisted Intervention – MICCAI 2022,
pages 475–485, Cham, 2022. Springer Nature Switzerland.
2, 3, 5, 6, 7, 8
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