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In this supplementary document, we provide detailed ex-
planations of the synthesized dataset in Sec. A. Additional
ablation studies in terms of the input for the detector and
the metric are provided in Sec. B. Moreover, we explain the
societal impact in Sec. C and provide a discussion part in
Sec. D.

A. Synthesized Dataset
For the process, briefly, we complement the visual expla-
nations by incorporating the annotations from COCO [10].
We begin by aligning potential annotations with samples
from the VQA-E [8] dataset based on shared objects. Fig-
ure 1 illustrates the overall process involved in synthesiz-
ing the multimodal EVQA dataset. We further analyze the
synthesized multimodal EVQA dataset (VQA-E-Syn) and
compare it with available datasets in Table 1. The distinc-
tions from previous EVQA datasets are highlighted in the
last three columns (i.e., the quantity and format of multi-
modal rationales). For instance, in comparison to the VQA-
X dataset [13], our VQA-E-Syn dataset provides more com-
prehensive and precise visual rationales. We believe this
synthesized dataset will foster future research in multi-
modal EVQA, which will be made publicly available.

B. Additional Ablation Study
We further report two groups of ablation studies.

B.1. Ablation of Linguistic Features for Vision Pre-
dictor

To assess the impact of linguistic features on the vision
predictor Grounding-DINO, we performed experiments on
VQA-E-Syn using features derived from either questions
ortextual rationales as input. We observe that the variant
using features from input questions struggled (41.93% AP),
as these do not provide comprehensive and clear referring
information like visual grounding [7]. In contrast, features
derived from textual rationales significantly enhanced the
detection model, leading to 47.45% AP (a 5.52% improve-
ment) in the MRVQA-E model. In addition, Fig. 2 shows
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Figure 1. The overall process of the multimodal EVQA dataset
synthesis. The text in the brackets shows an example.

a qualitative comparison between the variant and our ap-
proach using both MRVQA-E and MRVQA-C models. The
results demonstrate that our proposed approach leveraged
the generation of textual rationales to significantly enhance
performance for multimodal EVQA.

B.2. Ablation of the New Metric

To verify whether the introduced metric vtS effectively
measures the quality of the generated multimodal ratio-
nales, we performed a series of analyses in this part. Ta-
ble 2 reports the results. We began by evaluating the textual
similarity score (TS) derived from the GTE [9] model. The
results in the first two columns show that the quality of tex-
tual rationales, as represented by TS, aligned well with the
SPICE metric. Additionally, we explored various combina-
tions of visual and textual aspects in the multimodal ratio-
nale evaluation. Specifically, we considered three options:
(1) averaging AP and TS by taking their mean; (2) multi-
plying AP and TS; (3) dividing the result from (2) by the
result from (1), which We refer to as vtS. We observe that
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Table 1. Statistics for the comparison between the synthesized
EVQA dataset and prior datasets. Bounding box and scene graph
are abbreviated as B-box and S-G, respectively.

Dataset Image #Image #Q&A #TR #VR VR Format

VQA-HAT [3] COCO 20K 59K - 62K Region
VQA-X [13] COCO 28K 32K 41K 6K Region
VQA-E [8] COCO 108K 269K 269K - -
VCR [16] Movies 99K 264K 264K - -
Vizwiz-G [1] Phone 9K 9K - 9K Boundary
GQA-REX [2] GQA 82K 1040K 1040K 82K S-G
VQA-E-Syn COCO 20,367 33,726 33,726 93,377 B-box

I + Q + MRVQA-C I + TR + MRVQA-C

I + TR + MRVQA-EI + Q + MRVQA-E

Q: What are these people doing?

A: Playing frisbee.

TR: A father plays frisbee with his two sons.

Figure 2. Examples of generated visual rationales (bounding
boxes in red) with different linguistic inputs for our MRVQA-C
and MRVQA-E models.

options (1) and (2) failed to accurately reflect model per-
formance when there is a significant discrepancy between
the two components (e.g., comparing VCIN and MRVQA-
C, and considering that visual predictions would deteriorate
further if the model’s performance were to decline). In con-
trast, option (3) mitigated the impact of large discrepancies,
offering a more balanced assessment (e.g., 0.3% with (3)
compared to more than 0.7% with (1)). Consequently, we
used the combination approach outlined in (3) as the new
evaluation metric vtS for our multimodal EVQA task.

Furthermore, we tried to assess the introduced metric and
compared it with manual evaluation results. We randomly
selected 200 samples from VQA-E-Syn and employed three
annotators to evaluate the quality of predictions across four
aspects like VQA-E (including Fluent, Correct, Relevant,
Complementary), using a grading system that ranges from
1 to 5, where 1 represents ‘very poor’ and 5 signifies ‘very
good’. Table 3 reports the results. The quality of generated
rationales is good for human preference compared to DM-

Table 2. Ablation results of the multimodal evaluation metric on
VQA-E-Syn.

Method S TS AP (1) (2) (3)

PJ-X [13] 15.32 68.32 38.43 53.38 26.26 49.19
VQA-E [8] 16.83 71.67 40.65 56.16 29.13 51.88
FME [14] 18.77 73.16 42.57 57.87 31.14 53.82
DMRFNet [17] 20.41 75.06 44.74 59.90 33.58 56.06
VCIN [15] 22.07 78.13 45.97 62.05 35.92 57.89
MRVQA-C 22.19 79.57 45.86 62.72 36.49 58.19
MRVQA-E 23.68 78.56 47.45 63.00 37.28 59.16

RFNet. The vtS scores are also consistent with the human
evaluation results.

Table 3. Comparisons between human evaluation and the proposed
vtS metric.

Method Fluent Correct Relevant Complementary vtS (%)

DMRFNet 3.29 3.33 3.16 3.09 55.63
MRVQA-E 3.87 3.50 3.42 3.47 60.27

GT 4.64 4.44 4.04 3.93 80.82

C. Societal Impact
This paper in explanatory visual question answering
presents an approach that holds significant societal implica-
tions. By advancing the capabilities of machines to under-
stand and respond to human queries based on visual content,
the system has the potential to enhance the human-computer
interactions, leading to more intuitive and efficient commu-
nication. The societal implications of the answering system
extend beyond technological advancements, offering solu-
tions that can positively impact education, healthcare, and
accessibility on a broader scale.

D. Discussion and Limitations
While our approach has shown advancements through ex-
tensive experiments across various datasets, there remain
several areas for further exploration in future research. In
the proposed model, we utilize the pre-trained CLIP model
to represent input questions and images. However, the
model may encounter problems when users’ focus is on lo-
cal details within images or when contextual information is
limited. We show two failure cases in Fig. 3 to illustrate
these problems. In the left example, our model predicted
the wrong answer and failed to identify the relevant objects
due to the challenge of distinguishing the target among nu-
merous similar objects. This issue may stem from the CLIP
model’s strength in capturing global features from large-
scale image-caption datasets, which might limit its ability
to provide detailed local representations. In the example
shown right, although our model accurately understood the
cross-modal input and successfully located the relevant ob-
jects, the limited contextual information hampered the pre-



TR: A bird is standing on a car door. A: Car.

Q: What is the bird standing on?

TR: A bird standing on the side mirror of a 

vehicle. A: Mirror.

Q: Is there an owl on the clock?

TR: A owl is shown replacing the numbers of a

clock. A: Yes.

TR: Some small birds are shown in a clock. A: No.

MRVQA

GT

Figure 3. Two failure cases of our method.

cision of the linguistic prediction. The challenge arises be-
cause the zoomed-in local view complicates the recogni-
tion of the object (e.g., mirror). This scenario emphasizes
the importance of a multimodal EVQA model, which pro-
vides clear insights compared to a “black box” answering
system. Therefore, a promising direction for future work is
to explore the usage of models with more advanced feature
representations and enhanced cross-modal recognition ca-
pabilities, such as VilBert[12] and BLIP [6]. Moreover, the
zero-shot capabilities of recent powerful VLMs [4, 5, 11]
offer promising potential for multimodal EVQA.
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