LVP-CLIP: Revisiting CLIP for Continual Learning with Label Vector Pool

Supplementary Material

1. Ablation study on the effect of the similarity
function

The performance of various similarity functions is com-
pared in Tab. 1. The LVP-CLIP-T, based only on text em-
beddings (which corresponds to the traditional CLIP ap-
proach), is very sensitive to the choice of the similarity
function. It performs extremely poorly with L1 similar-
ity, and the cosine similarity gives much better performance
compared to L1 and L2 distances. Because of the poor
match between the text-embedding and the L1 similarity,
LVP-CLIP-IT presents a similar outcome, i.e. gives the
lowest performance with L1 similarity and favors cosine
similarity.

The LVP-CLIP-I, on the other hand, has very stable
performance under different similarity functions, with L1
slightly outperforming the other two. Since L1 is also much
easier to calculate than cosine similarity, we adopt it as
the similarity function if the labeled vector is derived from
image-embeddings. Otherwise, cosine similarity is used.

Similarity functions L1 L2  Cos
LVP-CLIP-T 0.1 659 733
LVP-CLIP-I 80.2 80.0 80.1

LVP-CLIP-IT 76.8 81.8 82.0

Table 1. Ablation study on the effect of the similarity function,
performed on CIFAR100 dataset.

2. Memory size of LVP

The memory size of the label vector pool (LVP) for each
dataset is shown in Tab. 2. We represent the size by using
different units, including the number of floating-point num-
bers and the equivalent number of images with dimensions
3x224x224 pixels. The total number of floating-point num-
bers needed to store the LVP can be calculated as P x K x D
where P is the pool size, K is the total number of classes,
and D = 768. As can be seen, even with the four datasets
combined, the memory needed for LVP is equivalent to only
13.6 frames of images (or 8.2MB).

3. Dataset without semantic labels

As discussed in our main paper, our proposed LVP enables
CLIP [5]-based classification without solely relying on text
embeddings. This is especially useful for datasets that lack
meaningful text labels, such as CORe50. As shown in

CF100[2] INI0O[I] DN[4] CR50[3] CF100+IN100+DN+CR50
pool size P 1 1 6 8 mixed(1,1,6,8)
total class K 100 100 345 50 595
float number 76,800 76,800 1,589,760 307,200 2,050,560
images 0.5 0.5 10.6 2.0 13.6
Bytes 0.3MB 0.3MB 6.4MB 1.2MB 8.2MB

Table 2. Memory size required for LVP in terms of floating point
numbers and the equivalent image size.

Fig. 1, CORe50 dataset has ten categories, represented by
the 10 columns. Each category includes five distinct in-
stances shown in 5 rows. Each instance is considered as
an individual class. Hence, every small image in Fig. | is
a unique class. These classes are labeled as o1, 02, ..., 050
with no inherent semantic meaning. Creating a set of mean-
ingful semantic labels to distinguish these instances is chal-
lenging. Therefore, classifying the images by comparing
their features to text embeddings of the labels becomes im-
practical. However, with the help of the proposed LVP, the
LVP-I embeddings can be easily generated from the training
images, facilitating accurate classification.

4. Unique advantages of LVP-CLIP

As illustrated in Fig. 2, parallel learning and retaining-free
continual learning are two unique advantages of LVP-CLIP
that most previous works cannot achieve. LVP-CLIP does
not assume that the total number of classes is known in ad-
vance, and can learn new tasks by simply concatenating the
label vector pools of each task. Moreover, since the LVPs
of each task is completely independent of other tasks, the
generation of LVPs can be processed on different machines
in parallel.

5. Cross-Task Incremental Learning

Fig. 3 shows the T-SNE visualization of the label vec-
tor pools generated during cross-task incremental learning
(CTIL). As can be seen, the LVPs for different datasets are
well-separated in the feature space, with the exception of
ImageNet100 and DomainNet datasets.

Tab. 3 provides a detailed comparison between the ideal
and actual performance of the three variants of the LVP-
CLIP for each learning task. Ideal performance is defined
as the test accuracy for each task when the four datasets
in the CTIL setting are learned and tested independently.
Entries highlighted in red indicate tasks where ideal and ac-
tual performance are closely aligned (within a difference of
0.1). As shown in Fig. 3 , the LVPs of ImageNet100 and
DomainNet are intermixed, and not well separated. This
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[01, ..., o5] -> plug adapters
[06, ..., 010] -> mobile phones
[011, ..., 015] -> scissors

[016, ..., 020] -> light bulbs
[021, ..., 025] -> cans

[026, ..., 030] -> glasses

[031, ..., 035] -> balls

[036, ..., 040] -> markers

[o41, ..., 045] -> cups

[046, ..., 050] -> remote controls

Figure 1. Images and labels from the CORe50 [3] dataset. There are a total of 50 classes but only 10 object names. Each object has five
different instances as five classes. Since the class names are very close to each other as text, it is nearly impossible to separate them by

zero-shot learning.
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Figure 2. The illustration of the parallelizability and retaining-free continual learning ability of LVP-CLIP. Four machines conduct the
experiments independently and in parallel and store the LVPs for each dataset. By simply concatenating all of LVPs, the continual learning
of the four datasets is achieved. Moreover, as the new tasks arrive, the concatenation is simply repeated to store the knowledge from new

tasks.

explains the higher offsets observed between the Ideal and
actual performances on the ten IN100 test tasks and the DN-
5 task(the ‘real’ domain) compared to the other test tasks.
It is clear that, the distribution of ImageNet100 dataset is
close to the ‘real’ domain of DomainNet.

6. Classes in ImageNet100

We have selected 100 classes from ImageNet [1] fol-
lowing [6]. The label ID and class names of the 100
classes are as follows: [15, ‘American robin’], [45, ‘Gila
monster’], [54, ‘eastern hog-nosed snake’], [57, ‘garter
snake’], [64, ‘green mamba’], [72, ‘European garden spi-

der’], [90, ‘lorikeet’], [99, ‘goose’], [119, ‘rock crab’],
[120, ‘fiddler crab’], [122, ‘American lobster’], [131, ‘lit-
tle blue heron’], [137, ‘American coot’],[151, ‘Chihuahua’],
[155, ‘Shih Tzu’], [157, ‘Papillon’], [158, ‘toy terrier’],
[166, ‘Treeing Walker Coonhound’], [167, ‘English fox-
hound’], [169, ‘borzoi’], [176, ‘Saluki’], [180, ‘American
Staffordshire Terrier’], [209, ‘Chesapeake Bay Retriever’],
[211, “Vizsla’], [222, ‘Kuvasz’], [228, ‘Komondor’], [234,
‘Rottweiler’], [236, ‘Dobermann’], [242, ‘Boxer’], [246,
‘Great Dane’], [267, ‘Standard Poodle’], [268, ‘Mexi-
can hairless dog [xoloitzcuintli]’], [272, ‘coyote’], [275,
‘African wild dog’], [277, ‘red fox’],[281, ‘tabby cat’],[299,
‘meerkat’],[305, ‘dung beetle’], [313, ‘stick insect’], [317,
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Figure 3. The T-SNE visualization of LVP-I and LVP-IT. Thanks to the remarkable feature extraction of CLIP, different dataset can be
well-separated in the feature space except the ImageNet100 and DomainNet.

Test Tasks CF100-1 CF100-2 CF100-3 CF100-4 CF100-5 CF100-6 CF100-7 CF100-8 CF100-9 CF100-10
Ideal-1 81.9 80.7 81.1 81.2 79.3 79.6 74.9 80.3 83.8 79.3
Ideal-IT 85.7 81.8 82.0 82.7 81.1 79.5 77.1 80.9 87.3 81.6
Ideal-C 83.1 81.4 82.5 79.9 80.2 79.3 75.3 80.5 86.1 81.1
LVP-CLIP-I 82.0 81.0 81.0 81.0 79.3 79.6 74.9 80.3 83.8 79.2
LVP-CLIP-IT 85.3 79.3 81.1 82.5 80.5 79.1 76.5 80.5 85.5 81.0
LVP-CLIP-C 84.7 79.4 81.7 80.8 76.6 78.5 73.6 80.6 84.5 79.1

Test Tasks IN100-1  IN100-2 IN100-3 IN100-4 IN100-5 IN100-6 IN100-7 1IN100-8 IN100-9 IN100-10
Ideal-1 93.0 84.2 88.2 97.0 94.4 92.0 92.0 90.6 912 95.4
Ideal-IT 93.2 86.2 90.2 96.4 94.6 92.0 93.6 90.2 92.6 96.2
Ideal-C 94.4 854 90.8 96.2 94.8 91.6 934 90.0 93.6 95.6
LVP-CLIP-I 89.0 81.0 87.2 94.6 84.0 88.6 84.0 85.0 86.2 85.6
LVP-CLIP-IT 90.0 82.6 89.4 95.2 85.6 86.8 81.2 81.8 83.2 84.6
LVP-CLIP-C 90.2 77.8 83.6 92.0 81.2 81.2 81.2 83.8 80.0 81.2
Test Tasks DN-1 DN-2 DN-3 DN-4 DN-5 DN-6 CR50-1 CR50-2  CR50-3 ALL
Ideal-1 82.2 56.1 76.0 46.1 87.0 73.3 87.0 85.1 86.3 82.7
Ideal-IT 824 58.6 77.1 42.1 88.2 74.5 - - - 83.7
Ideal-C 80.1 60.7 75.5 335 87.7 74.5 90.3 88.8 89.6 83.3
LVP-CLIP-1 82.2 56.1 75.9 46.1 86.0 73.3 87.0 85.1 86.3 80.9
LVP-CLIP-IT 81.9 582 77.0 42.1 86.0 74.2 86.6 84.2 86.1 81.0
LVP-CLIP-C 79.9 59.8 74.3 31.0 84.4 73.9 89.6 87.5 89.5 79.4

Table 3. Results of all the cross-task incremental learning experiments. The ideal result is the test accuracy of each test task when the
learning and testing are done on a given dataset independently. The LVP-CLIP results are the result of each test task across the four-
datasets. The numbers for which the offset from the ideal performance is less than or equal to 0.1 are highlighted in red indicating nearly

zero forgetting.

‘leathopper’], [331, ‘hare’], [342, ‘wild boar’], [368, ‘gib-
bon’], [374, ‘langur’], [407, ‘ambulance’], [421, ‘balus-
ter handrail’],[431, ‘bassinet’], [449, ‘boathouse’], [452,
‘poke bonnet’], [455, ‘bottle cap’], [479, ‘car wheel’],
[494, ‘bell or wind chime’], [498, ‘movie theater’],
[503, ‘cocktail shaker’], [S08, ‘computer keyboard’], [544,
‘Dutch oven’], [560, ‘football helmet’], [570, ‘gas mask
or respirator’], [592, ‘hard disk drive’],[593, ‘harmon-
ica’], [599, ‘honeycomb’], [606, ‘clothes iron’], [608,

‘jeans’], [619, ‘lampshade’],[620, ‘laptop computer’], [653,
‘milk can’], [659, ‘mixing bowl’], [662, ‘modem’], [665,
‘moped’], [667, ‘graduation cap’], [674, ‘mousetrap’],
[682, ‘obelisk’],[703, ‘park bench’], [708, ‘pedestal’], [717,
‘pickup truck’], [724, ‘pirate ship’],[748, ‘purse’], [758,
‘fishing casting reel’], [765, ‘rocking chair’], [766, ‘ro-
tisserie’],[772, ‘safety pin’], [775, ‘sarong’], [796, ‘bal-
aclava ski mask’], [798, ‘slide rule’],[830, ‘stretcher’],
[854, ‘front curtain’], [857, ‘throne’], [858, ‘tile roof’],



[872, ‘tripod’],[876, ‘hot tub’], [882, ‘vacuum cleaner’],
[904, ‘window screen’], [908, ‘airplane wing’], [936, ‘cab-
bage’], [938, ‘cauliflower’], [953, ‘pineapple’], [959, ‘car-
bonara’],[960, ‘chocolate syrup’], [993, ‘gyromitra’], [994,
‘stinkhorn mushroom’]]
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