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Figure 8. Effect of the p-value for nucleus sampling on R@100 on
Visual Genome in the validation set.

6. Nucleus sampling

We investigate the effect of different p-values for nucleus
sampling [13] and show the effect on the recall in Fig. 8.
The p-value for nucleus sampling determines the classes
that are sampled for the next token in the prediction se-
quence. The classes with the highest probabilities are sam-
pled up to the cumulative probability of p. Higher p-values
increase the likelihood of sampling more tokens with lower
output probabilities, allowing the model to make more di-
verse predictions. For lower p-values, only the most prob-
able classes are considered. In our experiments on Visual
Genome [16], we found that the highest recall is achieved
for a p-value of 0.95. The improved performance with high
p-values indicates that, forcing more diverse predictions is
beneficial.

7. Inference Speed

In Tab. 7, we present the inference speed of Pix2SG and
compare it to other methods on Visual Genome. One in-
teresting aspect of our autoregressive method is that it can
be configured to predict any number of relations, offering
a speed-accuracy trade off. When predicting only 100 or
20 relations, our model loses little performance, but gains a
significant speed boost, which can be valuable in time criti-
cal domains and tasks.

8. Sequence Decoding

We provide further details and examples of our encod-
ing and decoding of scene graphs into a sequence of to-
kens for our Pix2SG autoregressive architecture. Dur-

Table 7. Inference speed (FPS) on Visual Genome. For Pix2SG,
we show FPS and R@20 for predicting 300, 100 and 20 relations.

Method Location-free FPS R@20

IMP [40] 3.00 21.66
MOTIFS [46] 2.55 29.02

Transformer [34] 3.10 28.79
VCTree [33] 1.50 27.06
SS-R-CNN [35] 5.59 22.09
RelTR [6] 4.90 25.86
SGTR [19] 4.98 23.62

Pix2SG 300 ↭ 0.41 21.51

Pix2SG 100 ↭ 3.90 21.31
Pix2SG 20 ↭ 17.7 21.11

ing training, we randomly order the quintuples into a se-
quence, which is inspired by Pix2Seq [4] following a
similar procedure for permutationally invariant bounding
boxes. E.g. for a ground truth with two sets of quintuples
[A,B,C,D,E], [V,W,X,Y,Z], both [A,B,C,D,E;V,W,X,Y,Z]
and [V,W,X,Y,Z;A,B,C,D,E] would be valid sequences.
This ambiguity is limited through teacher-forcing, where
during training, the model is guided by ground truth labels.
I.e., the prediction of ”X” would be conditioned on the pre-
ceding token sequence e.g. [A,B,C,D,E,V,W]. This reduces
the uncertainty during training, especially for the latter to-
kens in the sequence. Empirically, we find that this partially
noisy training method works well. For evaluation, we de-
code the predicted sequence into a scene graph and compare
it directly with the ground truth scene graph. Since our eval-
uation method is entirely based on graphs, it is unaffected
by the ordering of the quintuples or the resulting ambiguity,
which is specific to our Pix2SG model architecture. This
also makes our evaluation algorithm agnostic to the SGG
method used.

9. More Attention Visualizations

In Fig. 9, we provide more examples of attention maps to
show our model’s location awareness. Generally, the at-
tention seems to be focused on the location of the corre-
sponding entity. When predicting the subject index or ob-
ject index, the model’s attention seems to be very focused
on the corresponding object category. For the prediction
of the predicate, the model attentions seems focused on the
contact points between the two entities that were predicted
before. These examples highlight the benefits of our autore-
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Figure 9. Visualization of the attention maps of Pix2SG on three
images. While the subject attention seems to focus on a few en-
tities, the object and predicate attentions tend to focus on the sur-
roundings as well.

gressive approach, where the step-by-step prediction of the
quintuples allows our model to focus its attention to a single
relevant component at a time.

10. Visualization of the Tree-Based Graph

Matching Algorithm

To provide further insight into our tree-based graph-
matching algorithm, we show an exemplary illustration for
a branching factor K = 2 in Fig. 10.

11. More Qualitative Results on Visual

Genome

In Fig. 11, we provide more examples for the predictions
of our model and the corresponding ground truth labels on
Visual Genome, and highlight the sparsity and consistency
of the annotations. Interestingly, we observe that most pre-
dicted entities and predicates seem plausible, even though
they are not included in the Visual Genome annotations.
In A, the model’s predictions describe the visual scene in
more detail than the sparse annotations. In B, we observe
that the model repeats many predictions linked to the en-
tities of man and boy. In the dataset, similar images can

have the entity label man or boy without a clear distinctive
signal. We suspect the model is optimizing for this ambi-
guity by predicting two separate scene graphs and sets of
entities for each of the semantically similar classes. In C,
our model predicts one instance of < banana, on, bike >,
which can be seen in the scene even though it is not in-
cluded in the annotations. Interestingly, there is no exam-
ple of the triplet < banana, on, bike > in Visual Genome,
showing our model can generalize to previously unseen se-
mantic connections.
12. More Qualitative Results on Panoptic

Scene Graph Dataset

In Fig. 12, we provide more examples for the predictions
of our model and the corresponding ground truth labels
on the panoptic scene graph dataset. Compared to visual
genome, the annotations are more comprehensive and con-
sistent, yet there are still many predictions of our model that
seem plausible but are not part of the ground truth annota-
tions. We do not observe the same behaviour as in Fig. 11
B) where the model is unsure of the correct classification
(”boy” vs. ”man”) and therefore predicts multiple scene
graphs, as these classes are combined into the class ”per-
son” in PSG. The model can, however, still struggle to pre-
dict the correct number of entities, as seen in Fig. 12 A)
(”bottle” and ”cup”).

13. Qualitative Image Generation Results

In Fig. 13, we include qualitative examples for a third down-
stream task, image generation. We generate an image from
an location-free scene graph, by using GPT-4 Vision, a
model not trained for this task. We prompt it with the fol-
lowing prompt ”A realistic real-world photo that matches
the following scene graph. The photo should not have any
details not mentioned here: <SG>”, where <SG> is a
location-free scene graph represented as a list of quintu-
plets. These first results indicate that location-free scene
graphs could also be a potent representation for image gen-
eration tasks.



Figure 10. Illustration of our tree-based graph-matching algorithm for a branching factor K = 2. Given a ground truth scene graph and a
predicted scene graph, our algorithm iterates over the ground truth nodes from the highest degree to the lowest in each step and explores K
different branches. Afterward, the different pathways are used to calculate the instance match proposals, and the pathway with the highest
recall is used to map the predicted scene graph to the ground truth scene graph. For nodes, capital letters denote their class and indices
their instance ID, i.e. ”A1” and ”A2” are two instances of class ”A”.
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Figure 11. Extended Qualitative Analysis of Pix2SG on Visual Genome. Image, Ground Truth Scene Graph and Predicted Scene Graph are
shown. The Predicted Scene Graph is constructed only from the 20 most probable predictions of the model (as in Recall@20). Matching
triplets from Ground Truth and Prediction are highlighted in green.
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Figure 12. Extended Qualitative Analysis of Pix2SG on Panoptic Scene Graph Dataset. Image, Ground Truth Scene Graph and Predicted
Scene Graph are shown. The Predicted Scene Graph is constructed only from the 20 most probable predictions of the model (as in
Recall@20). Matching triplets from Ground Truth and Prediction are highlighted in green.
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Figure 13. Qualitative examples of image generation from location-free scene graphs.
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