Exploring Missing Modality in Multimodal Egocentric Datasets
(Supplementary Material)

We present the supplementary results referenced in the
main paper. Section 1 presents additional results that were
not included in the main manuscript because of space con-
straints. Section 2 shows additional results and analysis on
modal incomplete datasets. Then, in Section 3, we analyze
the effect of Bottleneck architecture in missing modalities.
Later, in Section 4 we show additional details about Ego4D-
AR. Finally, we give extra details on the decoder of our pre-
training strategy in Section 5.

1. Additional Results

In this section, we provide additional results on Ego4D-AR
verbs and nouns and Epic-Kitchens nouns.

1.1. Ego4D-AR (verbs) and Epic-Kitchens (nouns)
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Figure 1. Modality drop probability p vs. accuracy for
modal-complete Epic-Kitchens (nouns) and modal-incomplete
Egod4D-AR (verbs). Our MMT effectively learns with missing
modalities under several p. The results are consistent with verb
classes in Epic-Kitchens and noun classes in Ego4D-AR (main
manuscript), i.e. smaller p is better for Epic-Kitchens and p =
25% works the best in Ego4D-AR. For Ego4d-AR verbs, the ac-
curacy is almost the same across all r¢.s+ for each experiment. As
mentioned in Section 4, this is due to the high bias caused by the
highly imbalanced distribution of verb classes.

Different values of p in random-replace We report the
results similarly to the main manuscript. In Figure 1, we
show the results using strategy random-replace for both
datasets. We find that analyzing the results of Ego4D-AR
verbs is hard due to the learning issue in the verb predic-
tion. However, we find that for Epic-Kitchens, the obser-

vations are consistent with the ones reported in the main
manuscript, e.g. selecting the appropriate value of p for each
dataset (e.g., p = 25%) is crucial to ensure satisfactory per-
formance across all r;.5; instances. This balance allows the
model to effectively adapt while still leveraging the bene-
fits of multimodal information. Furthermore, our models
significantly outperform the baseline.

Comparison with baselines In Table 1, we report the re-
sults with our methods vs. the baselines. In Epic-Kitchens,
our strategies perform much better than the proposed base-
lines and outperform the unimodal 19.5% by 3.5% points.

Ttest 0% | 25% | 50% | 75% | 100%
Unimodal 19.5 | 19.5 | 19.5 | 195 19.5
Baseline(zeros) 424 | 352 | 275 | 20.2 124
Baseline(skip) 424 | 329 | 229 | 13.1 35

Modality Dropping | 39.3 | 35.6 | 31.1 | 27.1 | 229
Ours (MMT) 41.0 | 36.6 | 319 | 27.6 | 23.0

Table 1. Comparison of our method with baselines on the Epic-
Kitchens-nouns dataset. We demonstrate the accuracy of our
method vs. unimodal performance across different missing modal-
ity ratios r¢es¢. We show in bold the best result and underline the
runner-up.

2. Studying modal-incomplete datasets

Recall that Epic-Sounds and Epic-Kitchens have modal-
complete training sets, and Ego4D-AR has modal-
incomplete training set with r4.q;, = 29%. To study the
effect of using MMT in the datasets with different miss-
ing modality severity levels, we create several variants of
the training sets in each dataset by manually enforcing dif-
ferent 744;n, > 0. We do so by randomly shuffling all
modal-complete training instances and storing this order in
a list. For Ego4D-AR, modal-incomplete instances (29%)
are placed at the very start of the list. Following this,
we establish our desired missing rate 7¢-4;, by sampling
from the start of this list. This method ensures that any
increase in 74,4, builds upon the existing set of modal-
incomplete instances, meaning that if we increase r¢yqin,
we add new modal-incomplete instances to those already
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Figure 2. Missing modality rate in training data .., vs. accuracy. Our MMT effectively deals with missing modalities under several

T'train regimes. For simplicity, p = 0 for all experiments.

included, thereby maintaining a cumulative effect. We also
use this protocol for the experiments in Sec. 4.5 and Sec. 4.6
of the main manuscript.

For Epic-Kitchens and Epic-Sounds we use 7iqin €
{25%,50%, 5%}, and ripqin € {29%,50%, 75%} for
Ego4D-AR. Figure 2 shows the results of training our model
with MMT in the datasets with different missing modality
rates in the training data r4.4;,. As can be seen, severe
modal incompleteness negatively affects the performance.
Nevertheless, overall, our models bring the performance
closer to the unimodal for higher 7;.5; and still allow the
model to benefit from all training samples.

3. Bottlenecks condensing the information.

As mentioned in the paper, MBT uses a small set of learn-
able fusion tokens to exchange information between the
modalities. One might wonder if the ability of the bot-
tleneck to ”condense” the information already plays some
role in dealing with missing inputs. To investigate this,
Table 2 compares training a vanilla self-attention model
with Ly = 0 (row 1) with the training MBT with the
same fusion layer (row 2). Table 2 shows that vanilla
self-attention performs poorly in the multimodal setup with
complete modalities, losing 10 points, compared to the bot-
tleneck fusion. Surprisingly, when the modality inputs are
incomplete, vanilla self-attention performs better (20.5% vs
13.6% with r4,,; = 100%). This shows that while the bot-
tlenecks are effective for multimodal fusion, they are sen-
sitive to missing modalities, and they must be adapted to
address incomplete modalities.

4. Ego4D-AR dataset details

As mentioned in the main manuscript, we curate action
recognition clips from the Ego4D Short-term Action An-
ticipation benchmark [1]. Given a video clip, Short-term
Action Anticipation predicts the possible future object in-

Architecture | Audio 7.5 | Accuracy
0% 45.3%

. 50% 32.7%
Self-attention 75% 26.7%
100% 20.5%

0% 55.5%

50% 34.3%

Bottleneck 75% 23.7%
100% 13.6%

Video-only | 0% - 100% | 41.4%

Table 2. Bottleneck fusion vs. vanilla self-attention with early
fusion in Epic-Sounds dataset.

teraction and a “’time to contact” estimate. The future object
interaction is predicted as a noun and verb pair, defining the
object and the type of interaction. The “time to contact”
is the number of seconds after which the interaction is ex-
pected. Given these annotations, we trim the clips centered
around the ground-truth “time to contact” and assign them
the ground-truth noun and verb annotations. Following that,
we obtained 98276 train and 47395 test instances for the
action recognition dataset Ego4D-AR. We show the imbal-
anced verb classes distribution of this dataset in Figure 3.

We observed that the dataset’s class distribution is highly
imbalanced. To demonstrate this, we plotted the distribution
of the top-15 most common verb classes in the training set
(see Figure 3). Notably, over 35,000 instances, or 38%, be-
long to the verb class ‘take’. Training with this imbalance
is challenging as the model tends to become biased towards
this verb class. To address this, we adapted a common strat-
egy: adjusting per-class weights in the cross-entropy loss
for verb prediction. Let |.S;| denote the number of samples
in the dataset labeled as class i, where S; = {x € Dataset |
label(z) = i}. The weight for class 7 is then w; = 1 — ‘éfll,
meaning the loss is reduced for more common verb classes
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Figure 3. Distribution of the verb classes in Ego4D-AR.

and increased for rarer ones. We did not apply this adjust-
ment to noun prediction, as noun label distribution is more
balanced. Adjusting per-class weights in the loss function
only slightly mitigated bias in the verb distribution. The
imbalance still presents a significant learning challenge, re-
sulting in high bias in the model predictions. Understanding
this is essential for interpreting the results in the Ego4D-AR
experiments.

S. Decoder in the pre-training

We are using Masked-Autoencoder (MAE) [2] for self-
supervised pre-training of the MBT backbone. MAE has
two parts: encoder and decoder. During training, some in-
put tokens are masked, and only the non-masked tokens are
passed to the encoder. Then, learnable masked tokens with
shared parameters are appended to the encoded non-masked
tokens, and all are passed to the lightweight decoder for re-
constructing the original input of the masked token. The re-
construction loss is applied to the masked tokens. After the
pre-training, the decoder is discarded, and only the encoder
is used for fine-tuning. We provide the encoder details in
the main paper and share the decoder details here.

Note that the encoder architecture uses bottleneck fu-
sion, meaning the two modalities can communicate through
several learnable tokens. We do not model the multimodal
fusion in the decoder part, so each modality has a separate
transformer in the decoder. Each decoder is a 4-layer trans-
former with 16 attention heads and an embedding dimen-
sion of 512. We do not share the parameters of the trans-
formers (the same as those in the encoder).
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