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1. More Implementation Details

1.1. Implementation Details on Pose Normalization
Given a frame at time t, raw pose pt ∈ ZK×2 is a collec-
tion of (x, y) coordinates for K human keypoints. Here,
K represents the number of 2D keypoints extracted by an
external pose extractor and Z is the set of integers. Before
inputting these raw keypoints to the pose encoder, we per-
form a normalization step to ensure they are unaffected by
changes in perspective, rotation, and positional offset in the
frame. Specifically, each keypoint is centered and scaled
with respect to the ”center of mass” of the human, which is
determined by averaging the coordinates of all joints. Sub-
sequently, we determine the angle required to rotate each
adjusted keypoint so that the head and ”center of mass”
align vertically, sharing the same x coordinates. The spe-
cific mathematical formulation is listed below:
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normalized pose = scaled pose × rotation matrix

These normalized 2D keypoints, pt, are then fed into the
pose encoder.

Our pose network is a fully-connected MLP network
with sizes [34, 128, 128, output size], where the output size
is determined by the specific network architecture we use in
training.

1.2. Implementation Details on different backbones
As mentioned in the main paper, we extracted I3D [1] fea-
tures from ATA and IKEA datasets, and for Desktop As-
sembly, we used ResNet [4] features. The dimension for
I3D features in ATA dataset is 2048, whereas in IKEA is
400. The dimension of ResNet feature in Desktop dataset is
512.

In experiments with DP[3] as the baseline, we mod-
eled the video encoder with Transformers. The projec-
tion network for video feature is a fully-connected layer
of input size that is determined by the input dimension of
video features and output size of 128. We set the pose net-
work to have input size of 34 and output size of 128 to
have a matched dimension for contrastive learning. Dur-
ing inference time, the projection and pose networks are not
used. The detailed parameters of network structure are not
changed. In our experimentation, the learning rate is set to
0.01, beam size is 151, window size is 15. During evalua-
tion, we use the default exploration threshold of 0.7 for our
segmentation results on ATA dataset. Also, we set an explo-
ration threshold of 0.0 for IKEA and Desktop datasets due
to their similar training and test transcripts. The training it-
eration is 40000 for ATA dataset, 20000 for IKEA dataset,
and 10000 for Desktop dataset.

In experiments with TASL[6], we regard the existing
GRU network as the output for RGB embedding. The out-
put dimension of RGB embedding is 64, so we set the pose
network to have input size of 34 and output size of 64 to
perform contrastive learning. In our experimentation, we
simply add the contrastive learning loss without any net-
work modification. Specifically, in the TASL architecture,
the learning rate is 0.01, decode sample rate is 30, window
size is 33, space size is 10, pred size is 3, auto encoder
weight is 0.2, edge window is 6 and edge step is set to 2.
The training iteration is 20000 for ATA dataset and 6000
for Desktop Dataset.

For MuCon[7], we pass the scaled pose keypoints to the
pose encoder to obtain pose embeddings of size 2048, cor-
responding to the RGB embeddings. These RGB embed-
dings are produced by a multi-stage temporal convolutional
network [2]. However, we pass the pose embeddings to
a “frozen” copy of the temporal convolutional network to
obtain pose embeddings that correspond to the same for-
mat as the RGB embeddings, i.e., same number of embed-
dings in time and same dimensionality. Then, we perform
the contrastive learning on these embeddings for both pose
and RGB modalities. In our experiments, we train for 100
epochs for both the baseline and our method. The specific
parameters are set to their default values with learning rate
of 0.01, and momentum of 0.0. It is noteworthy to mention
that MuCon has three output versions, and we picked the
best version (MuCon-full) for our comparisons.



Table 1. Split-wise comparison of proposed method versus baseline on IKEA dataset for online action segmentation.

Metric acc IoU Edit F1@0.5

Split 1/2/3/4/5 1/2/3/4/5 1/2/3/4/5 1/2/3/4/5

Greedy [5] 54.4/60.1/50.9/54.9/45.1 28.5/30.8/26.2/29.6/20.2 48.3/46.7/37.4/42.2/33.0 22.7/28.1/21.8/26.1/19.7
DP [3] 56.6/59.6/50.2/51.8/53.1 28.3/30.7/26.3/26.2/24.9 46.8/55.3/46.2/47.2/45.0 24.9/29.9/24.5/25.0/25.9
DP + Ours 57.3/61.7/50.3/51.3/51.4 29.9/31.5/26.3/26.6/24.2 48.3/55.3/46.3/47.6/44.6 25.9/30.2/24.2/25.2/25.5

2. Experimental Results on IKEA Dataset
As mentioned in the main paper, we provide split-wise re-
sults in Table 1. The overall results in the main paper are
computed as the average of all splits. We associate the over-
all marginal improvements on the IKEA dataset mostly to
its 5th split. For other splits, single-person is mostly ex-
hibited in the training and testing sets. On the contrary, in
many videos of the 5th split, the single-person assumption
is violated by background people, which negatively impacts
our pose encoding accuracy. While our contrastive learn-
ing module only establishes RGB-pose correspondence for
each person, the pose encoding might not be so accurate
when there are multiple persons in background. Results
of split three and split four are competitive between our
method and the baseline, whereas splits one and two ex-
hibit the largest improvements of our proposed pose-infused
methodology. In general, our method beats previous base-
lines in most cases in the IKEA dataset over different met-
rics and splits.
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