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Abstract

Image denoising is a crucial task in computer vision with
applications in real-world smartphones image processing,
remote sensing, and photography. Traditional convolu-
tion neural networks (CNNs) often struggle to reduce noise
while preserving fine details due to their limited receptive
fields. Transformer-based approaches, such as Restormer,
improve long-range feature modeling, while PromptIR en-
hances local feature refinement. However, existing methods
still face challenges in effectively integrating multi-scale
features for robust noise reduction. We propose Pureformer,
a Transformer-based encoder-decoder architecture specifi-
cally designed for image de-noising. The model employs
a four-level encoder-decoder structure, where each stage
utilizes Multi-Dconv Head Transposed Attention (MDTA)
and Gated-Dconv Feed-Forward Network (GDFN) to ex-
tract and refine multi-scale features. We proposed a feature
enhancer block in the latent space expands the receptive
field using a spatial filter bank, improving feature fusion
and texture restoration. Skip connections between the en-
coder and decoder help retain spatial information, ensuring
high-fidelity reconstruction. Pureformer is evaluated on the
NTIRE 2025 Image Denoising Challenge dataset, achiev-
ing a test PSNR of 29.64 dB and SSIM of 0.8601. We also
validated our Pureformer on existing benchmark datasets
BSD68 and Urban100 datasets. The results demonstrate
that Pureformer surpasses existing methods in both noise
reduction and detail preservation, making it a strong choice
for real-world image denoising. Access our codes and
models from https://github.com/Chapstick53/
NTIRE2025_cipher_vision.

1. Introduction
Image denoising is a fundamental problem in computer
vision, essential for enhancing image quality in applica-
tions such as medical imaging [31, 59], remote sensing
[14, 40], image super-resolution [3, 19, 52], depth esti-
mation [26–28], precision agriculture [2] and autonomous

systems [5, 48, 49]. Noise, particularly Gaussian noise,
is often introduced during image acquisition due to sen-
sor limitations [25, 43], environmental interference [29], or
transmission artifacts [36, 54]. Traditional denoising meth-
ods, including wavelet-based filtering [6], non-local means
[4], and block-matching approaches such as BM3D [14],
rely on handcrafted priors and often struggle to generalize
across diverse noise conditions. Developing robust denois-
ing models capable of restoring fine image details while pre-
serving structural information remains a critical challenge
[22, 55, 59].

Deep learning-based denoising methods have demon-
strated significant progress over traditional approaches,
leveraging large-scale datasets and high-capacity neural
networks. Convolutional Neural Networks (CNNs) such as
DnCNN [59] and FFDNet [61] have been widely adopted
due to their ability to learn complex noise distributions.
However, CNN-based methods rely on localized receptive
fields, limiting their ability to model long-range dependen-
cies and multi-scale contextual information, often resulting
in over-smoothed outputs.

Transformer-based architectures have recently emerged
as powerful alternatives, addressing these limitations by
leveraging self-attention mechanisms. Vision Transformers
(ViTs) [16] introduced global feature modeling but suffer
from high computational costs. SwinIR [36] mitigates this
issue through hierarchical attention, improving efficiency
while maintaining long-range feature capture. Restormer
[57] significantly improved image restoration by introduc-
ing a channel-wise self-attention mechanism, which pro-
cesses feature interactions along the channel dimension
rather than spatially. This design enables efficient high-
resolution processing while maintaining competitive perfor-
mance. However, Restormer’s fixed local window-based
approach limits its ability to fully exploit spatial correla-
tions, particularly for fine-grained textures and high-noise
scenarios. Moreover, its hierarchical structure, while effec-
tive, lacks a dedicated feature refinement module in the la-
tent space, which is crucial for handling severe noise levels.
On the other hand, PromptIR [21] has introduced the im-
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plicit prompting technique for all-in-one image restoration
task, in which they apply implicit prompting at the decoder
levels. While in encoder-decoder style architecture, encoder
features merges with the decoder features via skip connec-
tions. keeping this in mind, due to the application of the
implicit prompting only on the decoder side imbalances the
harmony within encoder and decoder features. This affects
the performance of the model in sever degradations.

To address these challenges, this work proposes Pure-
former, a Transformer-based encoder-decoder model de-
signed for image denoising at severe noise level (σ = 50).
We design a four-level hierarchical encoder-decoder struc-
ture, where each level comprises Multi-Dconv Head Trans-
posed Attention (MDTA) and Gated-Dconv Feed-Forward
Network (GDFN) blocks to extract the robust features. We
propose a feature enhancer block in the latent space which
is composed of a multi-scale feature extraction through spa-
tial filter bank followed by the series of transformer blocks
to merge the multi-scale features and to improve the feature
correlation. The propsed approach is depicted in Figure 1.

Compared to Restormer, the proposed model explicitly
incorporates spatial feature aggregation, improving its abil-
ity to reconstruct fine textures in highly degraded images.
Compared to PromptIR, Pureformer maintains a deeper hi-
erarchical structure, ensuring robustness against high-noise
scenarios. The main contribution of the paper are as fol-
lows:
• Introduction of Pureformer, a new Transformer-based

encoder-decoder architecture designed to reduce noise
from given severely noisy image.

• We propose a feature enhancer block in the latent space
that extracts multi-scale features using a spatial filter
bank. This is followed by a series of transformer blocks
that enhance feature correlations and refine the latent
space representations.

• Comparative evaluation on NTIRE 2025 Image Denois-
ing Challenge dataset and existing benchmark datasets
with state-of-the-art methods, demonstrating improved
denoising performance in high-noise settings.

Extensive benchmarking on the NTIRE 2025 Image De-
noising Challenge dataset [12], achieving PSNR: 29.65 dB,
SSIM: 0.8601 on test data. The paper is structured as fol-
lows: Section 2 reviews related work, Section 2 details the
proposed approach, Section 4 presents experimental results
and comparisons, Section 5 presents results and discussion
and Section 6 concludes with key findings and future direc-
tions.

2. Related Work
Image denoising is a critical task in computer vision, aim-
ing to recover high-quality images from noisy inputs. Tra-
ditional approaches relied on handcrafted priors such as
wavelet thresholding [6], total variation minimization [46],
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Figure 1. Proposed Pureformer encoder-decoder architecture for
image denoising. The input noisy image is processed through a
multi-level encoder, a feature enhancer block, and a multi-level
decoder. Each encoder and decoder level employs xN transformer
blocks [57], consisting of Multi-Dconv Head Transposed Atten-
tion (MDTA) and Gated-Dconv Feed-Forward Network (GDFN)
blocks (shown in Figure 2). The feature enhancer block, placed
in the latent space, expands the receptive field using a spatial filter
bank. The multi-scale features are then concatenated and refined
through xN transformer blocks to enhance feature correlation and
merge multi-scale information effectively.

and non-local means filtering [4]. One of the most widely
used classical methods is CBM3D (Collaborative Filtering
for Color Images) [13], which leverages non-local filtering
and block-matching techniques to remove noise while pre-
serving texture. These methods effectively removed noise
in structured regions but struggled with preserving fine tex-
tures and details. Patch-based methods like BM3D [14]
and WNNM [23] improved performance by modeling non-
local self-similarity in images. Bayesian formulations [40],
sparse coding [54], and Markov random fields [45] further
enhanced denoising by learning image priors. However,
these methods lacked adaptability to diverse and complex
noise patterns. The advent of deep learning introduced data-
driven models that could learn intricate noise distributions
and significantly outperform traditional techniques in var-
ious applications, including medical imaging [31], remote
sensing [40], and autonomous systems [5].

Convolutional Neural Networks (CNNs) have been ex-
tensively employed for image denoising due to their abil-
ity to capture local structures within images. Early deep
learning-based methods, such as TNRD [11] and RED-Net
[41], demonstrated the effectiveness of residual learning
and end-to-end training for denoising. DnCNN [59] intro-
duced batch normalization and deeper architectures, signifi-
cantly improving performance over traditional methods like
BM3D [14]. FFDNet [61] further extended this by incor-
porating a tunable noise level map, allowing flexibility in
handling varying noise intensities. Other CNN-based ap-
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Figure 2. Transformer Block details: Left side: Multi-Dconv
Head Transposed Attention (MDTA), which enables spatially en-
riched query-key feature interaction across channels instead of the
spatial dimension. Right side: Gated-Dconv Feed-Forward Net-
work (GDFN), which facilitates controlled feature transformation
to ensure the propagation of useful information. Encircled M, A
and S denotes matrix multiplication, addition and sigmoid opera-
tion respectively.

proaches, including IRCNN [60], MemNet [47], and NLRN
[38], introduced iterative refinement and non-local feature
aggregation to enhance denoising robustness. While these
models effectively suppress noise, they remain constrained
by their local receptive fields, limiting their ability to model
long-range dependencies essential for capturing global con-
text. Recent hybrid models like ADNet [51] and RIDNet
[1] have attempted to mitigate this issue by integrating at-
tention mechanisms, but their reliance on convolutions still
restricts global feature modeling. To improve feature ex-
traction and texture preservation, several CNN-based mod-
els have been proposed. BRDNet (Block Residual Denois-
ing Network) [49] introduced dense residual connections
within block-wise structures to facilitate multi-scale feature
aggregation. More recently, AirNet (All-in-One Restoration
Network) [32] incorporated self-attention modules within
a CNN framework, bridging the gap between CNNs and
Transformers. Unlike traditional CNN models, AirNet dy-
namically adjusts its receptive field based on the noise char-
acteristics, allowing it to handle varying noise intensities
more effectively. However, despite these improvements,
CNN-based models still struggle with capturing long-range
dependencies, limiting their ability to fully restore complex
noise-corrupted images [7, 17, 18].

To overcome the limitations of CNNs, Transformer-

based models have been explored for image restoration
tasks [20]. The self-attention mechanism in Transform-
ers enables global context modeling, which is beneficial
for capturing long-range dependencies. Vision Transform-
ers (ViTs) [16] introduced this concept to computer vision,
demonstrating their ability to process spatial correlations
more effectively than CNNs. IPT [8] extended this by lever-
aging large-scale pretraining on multiple image restora-
tion tasks, achieving state-of-the-art (SOTA) performance
in denoising and super-resolution. SwinIR [36] improved
upon standard Transformers by incorporating a hierarchical
structure and window-based self-attention, leading to better
computational efficiency. Other works such as Deformable
Transformer [62] and LeWin Transformer [33] further op-
timized Transformer architectures for image restoration by
reducing computational overhead while maintaining strong
global feature extraction. Additionally, Uformer [53] in-
troduced a UNet-inspired hierarchical Transformer archi-
tecture tailored for image denoising, striking a balance be-
tween efficiency and performance. Despite these advance-
ments, many Transformer-based models still struggle with
high computational costs and inefficient processing of fine-
grained details in high-noise images.

Restormer [57] addressed the computational challenges
associated with high-resolution image restoration by intro-
ducing a transposed attention. Unlike conventional spa-
tial self-attention, which operates across pixel locations,
Restormer models feature interactions along the channel
dimension, significantly reducing computational complex-
ity while preserving global dependencies. This approach
demonstrated superior efficiency in image denoising, de-
blurring, and deraining. However, despite its effectiveness,
Restormer’s fixed local window-based approach limits its
ability to fully exploit spatial correlations, particularly in
high-noise scenarios. Swin2SR [37] refined SwinIR by
integrating residual Swin Transformer blocks, further en-
hancing denoising performance. Other Transformer-based
methods, such as NAFNet [9] and HAT [10], introduced
lightweight attention modules and hierarchical aggregation
strategies to improve efficiency in real-time denoising ap-
plications. Meanwhile, AIDT [58] adopted an adaptive iter-
ative framework to refine noise suppression progressively.
While these advancements have improved image denoising,
existing models still face challenges in retaining fine details
and efficiently handling severe noise conditions.

Heterogeneous Window Transformer (HWformer) [50]
addressed computational efficiency concerns by introduc-
ing heterogeneous global windows that shift both hori-
zontally and vertically. This design effectively balances
long- and short-range feature interactions, reducing compu-
tational overhead while preserving spatial coherence. Ef-
ficientFormer [34] further explored the hybridization of
Transformers and CNNs, achieving a balance between com-
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putational efficiency and denoising performance. Other hy-
brid models, such as RestNet [39] and DAT [15], employed
dynamic attention mechanisms to optimize spatial feature
extraction, resulting in improved image clarity with mini-
mal artifacts. Meanwhile, MADFormer [24] introduced a
memory-augmented Transformer architecture that progres-
sively refines noisy inputs through multiple iterations, ef-
fectively suppressing noise while preserving fine textures.
These approaches highlight the ongoing research efforts in
optimizing Transformer-based architectures for image de-
noising, yet challenges remain in handling extreme noise
levels while maintaining computational efficiency.

PromptIR [21] introduced a prompt-based learning
paradigm for universal image restoration. Unlike conven-
tional methods that require separate models for each type
of image degradation, PromptIR leverages degradation-
specific prompts to dynamically adapt its restoration net-
work. This approach allows the model to generalize across
multiple degradation scenarios without requiring explicit
knowledge of the type or severity of corruption. Other
works, such as AirFormer [35], explored the integration of
adaptive prompts with self-attention mechanisms to further
refine denoising performance. GLUformer [55] proposed a
Global-Local Window Transformer block within a layered
encoder-decoder structure, effectively capturing both lo-
cal and long-range dependencies. Meanwhile, DenSformer
[56] incorporated dense residual connections within Trans-
former layers, reinforcing local and global information in-
tegration to improve stability and denoising performance.
Similarly, SUNet [22] utilized the Swin Transformer within
a UNet-based model, efficiently merging hierarchical fea-
ture learning with long-range context modeling to enhance
image restoration in high-noise settings.

Transformer-based image denoising models face chal-
lenges in balancing computational efficiency with feature
retention. While methods like Restormer and PromptIR im-
prove efficiency and adaptability, they struggle with pre-
serving fine textures and high-frequency details in severe
noise conditions. Building on existing advancements, we
propose Pureformer, a Transformer-based encoder-decoder
architecture that overcomes limitations in current mod-
els. By integrating a four-level hierarchical structure with
MDTA and GDFN blocks, Pureformer enhances long-range
dependencies and local feature interactions. Additionally,
a feature enhancer block in the latent space expands the
receptive field and improves feature fusion, leading to su-
perior noise suppression and improved high-noise image
restoration.

3. Proposed Approach
Overall Pipeline: The proposed Pureformer model follows
an encoder-decoder architecture to effectively remove noise
from images. The input noisy image I ∈ C× H× W is first

passed through a multi-level encoder, which extracts hier-
archical feature representations C0 ∈ f × H × W . Each
encoder level consists of ×N transformer blocks, which
include Multi-Dconv Head Transposed Attention (MDTA)
and Gated-Dconv Feed-Forward Network (GDFN) mod-
ules to extract long-range dependencies. At latent space,
the extracted features are then passed through our feature
enhancer block. Our feature enhancer block expands the
receptive field using a spatial filter bank, improving the
model’s ability to capture contextual information. These
extracted multi-scale features are then concatenated along
channel dimension and refined through ×N transformer
blocks to enhance feature correlation and merge multi-scale
information effectively. The processed features are then fed
into a multi-level decoder, which reconstructs the denoised
image using learned representations. Each decoder level,
similar to the encoder, employs ×N transformer blocks to
refine feature maps and preserve important structural de-
tails. Finally, the refined features are decoded into a clean,
high-quality image, restoring fine textures while suppress-
ing noise efficiently.

3.1. Efficient Transformer Block
To extract long range dependancisies, we utilise existing
efficient transformer block [57]. It consists of two mod-
ules, multi-Dconv head transposed attention (MDTA) which
performs (spatially enriched) query-key feature interaction
across channels rather the spatial dimension, and Gated-
Dconv feed-forward network (GDFN) that performs con-
trolled feature transformation as shown in the Figure 2.
Here, the GDFN regulates the flow of information across
the hierarchical levels in the pipeline, ensuring that each
level captures fine details that complement the others. In
contrast to MDTA, which primarily enhances features with
contextual information.

3.2. Feature Enhancer Block
Let CL ∈ f × H × W represents the input features to
the latent space. Our feature exnhancer block processes the
L0 trough the spatial filter bank Sf where f represents the
number of convolution layers. This filter bank has multiple
convolution layers differing filter/kernel sizes. Further, it
concatinates the extracted multi-scale features along chan-
nel dimension and process through the ×N transformer
block. The operation of our feature enhancer block is de-
fined as below,

LSf
= τ [C1

L, C
2
L, ..., C

f
L] (1)

where, C1
L denotes the extracted features through the

1st convolution layer of k×k size filter, [·] represents
the channel-wise concatination operation, τ represents the
transformer block (as shown in the Figure 1).
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4. Experimental Setup
To demonstrate the effectiveness of the proposed Pure-
former, we evaluate it on NTIRE 2025 image denoising
challenge on test set having noise level σ = 50. We also
evaluate it on existing benchmark datasets BSD68 [42] and
Urban100 [21] with noise level σ = 50.

4.1. Training Details
Our training strategy is carefully designed to balance effi-
ciency and performance. We follow the competition guide-
lines and utilize the provided training set (DIV2K (1000)
and LSDIR (86,991)) to train our model for the image de-
noising task. We consider patch-based training with a patch
size of 128× 128 followed by augmentations. The training
process uses the AdamW optimizer (β1 = 0.9, β2 = 0.999)
with an initial learning rate of 1e−4, which is gradually re-
duced to 1e−6 using a cosine annealing schedule that in-
cludes a linear warmup for 15 epochs. The batch size is set
to 4, consisting of 4× 3× 128× 128 patches, and training
is conducted on 2× A100 GPUs. Data augmentation tech-
niques such as random cropping, flips, 90◦ rotations, and
mixup are applied to improve generalization. We use L1
Loss to optimize the parameters.

5. Results and Discussion
In this section, we present a comprehensive evaluation of
our Pureformer model against state-of-the-art (SOTA) de-
noising methods.

The performance is assessed on the NTIRE2025 Im-
age Denoising Challenge dataset as well as widely recog-
nized benchmarks such as BSD68[42] and Urban100 [21].
The effectiveness of Pureformer is measured using Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity In-
dex Measure (SSIM), which are standard metrics for image
quality assessment.

5.1. NTIRE 2025 Image Denoising Challenge
The NTIRE2025 Image Denosing Challenge has develop-
ment and test phase. The test set consists of 200 images
and having Gaussian noise with σ = 50). The final rank-
ing is determined based on PSNR. Table Table 1 summa-
rizes the challenge results for Test phase, where our Pure-
former achieves a PSNR of 29.64 dB and SSIM of 0.8601,
securing the 8th position among all participating teams. We
also show the visual results comparison between our Pure-
former and existing PromptIR approaches which shows that
our Pureformer restores the input noisy images by reducing
the noise level at greater extent as shown in Figure 3.

In Figure 3, a visual comparison of image denoising
performance across different methods is presented. The
Figure 3 displays close-up views of the input noisy im-
age, ground truth, results from an existing method, and the

proposed Pureformer. Each denoised output is annotated
with its corresponding PSNR value, reflecting the quality
of restoration. Among the compared methods, Pureformer
achieves the highest PSNR, indicating superior capability in
recovering fine image details and structural integrity. Visu-
ally, the output from Pureformer is noticeably closer to the
ground truth, exhibiting fewer artifacts and better-preserved
textures, thereby validating its effectiveness in challenging
high-noise scenarios.

Table 1. NTIRE2025 Image Denoising Challenge Results on a
Test set (σ = 50).

Team PSNR (dB) SSIM Ranking

SRC-B 31.20 0.8884 1
SNUCV 29.95 0.8676 2
BuptMM 29.89 0.8664 3
HMiDenoise 29.84 0.8653 4
Pixel Purifiers 29.83 0.8652 5
Alwaysu 29.80 0.8642 6
Tcler Denoising 29.78 0.8632 7

cipher vision (Ours) 29.64 0.8601 8

5.2. Zero Shot Evaluation on Existing Datasets
Here, we evaluate our Pureformer on existing benchmark
datasets BSD68 [42] and Urban100 [30] having Gaussian
noise σ = 50. We carry zero-shot evaluation on these
datasets and compare it with the existing conventional and
transformer-based methods. The results are shown in Table
2 which depicts that our Pureformer clearly outperforms the
existing conventional and most recent approaches on both
BSD68 and Urban100 datasets.

Table 2. Quantitative image denoising results on BSD68 and Ur-
ban100 datasets with (σ = 50).

Methods BSD68 Urban100
PSNR SSIM PSNR SSIM

BM3D [13] 27.36 0.763 27.93 0.840
DnCNN [59] 27.92 0.789 27.59 0.833
IRCNN [60] 27.88 0.790 27.70 0.840
BRDNet [49] 28.16 0.794 28.56 0.858
AirNet [32] 28.23 0.806 28.88 0.871
Restormer [57] 28.41 0.810 29.31 0.878
PromptIR [21] 28.49 0.813 29.39 0.881

Pureformer 28.68 0.819 29.78 0.890

The superior performance of Pureformer is attributed to:
Hierarchical Feature Learning: The multi-scale encoder-
decoder structure enables better noise suppression and de-
tail retention. Feature Enhancer Block: This block refines
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Figure 3. Visual results comparison of proposed Pureformer on NTIRE 2025 Image Denoising Challenge validation dataset. (a) Input
noisy image, (b) Noisy Patch image, (c) Results of the PromptIR [21], (d) Results of the proposed Pureformer, and (e) Ground truth image.

representations by expanding the receptive field, improv-
ing local and global feature interactions. Efficient Atten-
tion Mechanisms: The MDTA and GDFN modules capture

long-range dependencies while ensuring computational ef-
ficiency.
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5.3. Computational Complexity Analysis
Here, We have compared the computational cost of our
proposed Pureformer with Restormer [57] and PromptIR
[21] in terms of Parameters and FLOPs. PromptIR is
the most resource-intensive, with 35.59M parameters and
158.14 GFLOPs, making it ideal for high-performance se-
tups. Restormer offers a balanced trade-off with 26.13M
parameters and 140.99 GFLOPs. In contrast, Pureformer
is the most lightweight and efficient model, requiring only
11.76M parameters and 64.31 GFLOPs, making it well-
suited for real-time and edge-device applications.

In our proposed Pureformer architecture, we deliberately
reduce the base channel dimension (dim) from 48 (as used
in Restormer) to 32. This decision is driven by our goal to
develop a lightweight and computationally efficient image
restoration model without significantly compromising per-
formance. The number of parameters in convolutional and
attention layers scales approximately quadratically with re-
spect to the channel dimension. Hence, using dim=32 re-
duces the overall computational load and memory footprint
substantially, making the model more suitable for real-time
or resource-constrained deployment.

Table 3. Comparison of model complexity and computational cost
for image denoising

Methods Parameters (M) FLOPs (G)

Restormer [57] 26.13 140.99
PromptIR [21] 35.59 158.14
Pureformer 11.76 64.31

5.4. Discussion
The results demonstrate that Pureformer surpasses both
classical CNN-based denoising methods and state-of-the-
art Transformer-based models like Restormer [57] and
PromptIR [44]. While inspired by Restormer’s architectural
design, Pureformer introduces a feature enhancer block that
strengthens spatial-channel feature correlations. This block
extracts multi-scale spatial features using a spatial filter
bank, followed by Transformer layers that refine feature re-
lationships through transposed attention on the channel di-
mension. By enhancing feature coherence, Pureformer sig-
nificantly boosts image denoising performance, effectively
addressing limitations in existing models.

6. Conclusion

In this paper, we introduced Pureformer, a Transformer-
based encoder-decoder architecture for image denoising.
Unlike conventional CNN-based methods, our model em-
ploys a four-level hierarchical structure with Transformer

blocks, including Multi-Dconv Head Transposed Atten-
tion (MDTA) and Gated-Dconv Feed-Forward Network
(GDFN), to effectively capture both local and global de-
pendencies. The proposed feature enhancer block in the
latent space further improves multi-scale feature fusion, en-
hancing denoising performance. We evaluated Pureformer
on the NTIRE 2025 Image Denoising Challenge testset,
demonstrating state-of-the-art performance with a PSNR of
29.64 dB and SSIM of 0.8601. We also evaluate and com-
pare our Pureformer with other existing methods on exist-
ing benchmark datasets BSD68 and Urban100. Our method
effectively suppresses noise while preserving fine image de-
tails, achieving competitive results compared to existing ap-
proaches. Future work will explore improvements in com-
putational efficiency and generalization to real-world noise
distributions. Additionally, integrating adaptive attention
mechanisms and self-supervised learning techniques could
further enhance the robustness of our model. Our work
highlights the potential of Transformer-based architectures
for image denosing, paving the way for further advance-
ments in low-level vision tasks.
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