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Abstract

Multi-output interactive segmentation methods generate
multiple binary masks when given user guidance, such as
clicks. However, it is unpredictable whether the order of
the masks will match or whether those masks will be the
same when given slightly different user guidance. To ad-
dress these issues, we propose conSAMmé, a contrastive
learning framework that conditions on explicit hierarchical
semantics and leverages weakly supervised part segmen-
tation data and a novel episodic click sampling strategy.
Evaluation of conSAMmé’s performance, click robustness,
and mask ordering show substantial improvements to base-
lines with less than 1% extra training data compared to the
amount of data used for the baseline.

1. Introduction

Computational photography is moving beyond ‘simple’
point-and-shoot devices [13, 23, 25, 26], with a central chal-
lenge for capturing and manipulating digital images being
to isolate regions of interest by classifying which pixels be-
long to the target region (i.e., image segmentation). For in-
stance, one may want to locate a person in a portrait [11, 38]
or interactively remove shadows [7, 8]. With modern fully
automated methods [3, 18, 35, 40] still performing poorly
at times, interactive segmentation methods are a promis-
ing way for infusing a small amount of user guidance, usu-
ally in the form of clicks [2, 15, 21, 36], to efficiently ac-
quire high quality segmentations. While early interactive
approaches generated a single output for a given user in-
put [2, 32, 36], the trend has instead shifted to generating
multiple segmentation options given the inherent ambigu-
ity of such input [15, 20]. However, for such multi-output
methods, two key issues arise.

The first limitation of existing methods is that the order
of the resulting masks can be inconsistent. As exemplified
in Figure 1(a), a single click results in the entire object ap-
pearing in the first mask position and its part mask in the
second position, while another click reverses that order. As
a result, a user must hunt for the correct mask instead of
knowing where to find the object or part a priori. We sus-
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Figure 1. Exemplar image with a user-input click (top row). In
panel (a), SAM [15] produces an inconsistent ordering of seg-
mented regions, for example placing the object mask in the first
position for one click (left) and in the second position for another
(right). Moreover, even though both clicks target the same ob-
ject, clicking on the front yields a higher-quality object mask than
clicking on the rear tire. In contrast, panel (b) shows how a model
trained with our conSAMmé framework not only produces consis-
tently accurate object-level masks from both clicks but also main-
tains a stable ordering (object in position 1, part in position 2).
Parts and zoomed and cropped for ease of visualization.

pect this happens because the model does not learn explicit
positions for each hierarchical level (e.g., “first mask = ob-
ject” and “second mask = part”). Existing work [15, 20]
instead ignores ordering based on semantics when picking
for training a mask that best matches the ground truth.

Second, these algorithms can produce different object-
level masks depending on the click location. Figure 1(a)
illustrates how clicking on the front tire of a bus yields a
poorer mask than clicking on its rear tire, forcing the user
to guess the best click location or necessitate further refine-
ments. This challenge likely stems from the fact that meth-
ods assume an entity’s appearance (e.g., size, aspect ratio)
when deciding how to segment, which can fail when objects
appear in varied poses or views [22]. We hypothesize that
learning part-whole relationships (i.e., hierarchical seman-
tics) would be more robust: for instance, a click on a tire
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of a bus (a part) or its head should lead the model to also
include the entire bus (the object), as shown in Figure 1(b).
By learning how parts fit into wholes, the model can lever-
age knowledge from multiple semantic levels rather than
relying on a single global property (i.e., appearance).

To overcome these limitations of prior work, we pro-
pose the following contributions. First, we introduce a
contrastive learning framework, conSAMmé (Consistent
Segment Anything Model for Multi-level Extraction), for
teaching the model to generate hierarchically-consistent
output segmentations, which consistently positions objects
as the first output and parts1 as the second output. This is ex-
emplified in Figure 1(b). Second, we propose a novel click
sampling strategy based on object-part relations to facilitate
the learning of part-whole relationships to generate consis-
tent results. Third, to account for the relative scarcity of part
segmentation training data, and to preserve zero-shot per-
formance, we develop a weakly-supervised data generation
technique using SAM’s [15] automatic mask generation and
object-level ground truth, that partitions an object into parts
to facilitate training. Experiments show conSAMmé outper-
forms baselines at generating consistent segmentation out-
puts while only requiring less than 1% of additional training
data compared to SAM.

This work can directly benefit computational photog-
raphy, both for enhancing and restoring images with less
human involvement, such as when adjusting lighting on a
face, changing the color of a garment sleeve, or modify-
ing the saturation of an entire object. We also anticipate
this work can benefit a broader audience. It can accelerate
creating datasets by reducing the amount of required hu-
man intervention, including for creating part-level [1, 9, 30]
and subpart-level [28] segmentation datasets. It could also
extend beyond interactive segmentation. For instance, lan-
guage models that generate multiple completions for a user
to choose from [4, 6, 37] could incorporate entity consis-
tency when deciding what information to provide to a user,
such as concise explanations for experts and detailed expla-
nations for lay users.

2. Related Work
Multi-Output Interactive Segmentation Algorithms.
Numerous models generate multiple segmentations from a
single user interaction (e.g., a click). The focus for early
approaches, such as [19], was to generate multiple diverse
segmentations as a precursor to establishing a single, high-
quality segmentation. MultiSeg [20] was the first method
centered on generating multiple segmentations as the tar-
get output by producing many segmentations correspond-
ing to aspect ratios and computing loss on the top-k best

1While our method could be extended to subpart-level hierarchies, we
limit our scope to part-whole segmentation due to the lack of instance seg-
mentation datasets with subpart annotations at the time of writing.

matches with the ground truth, where k is a hyperparame-
ter. Extending this paradigm, the Segment Anything Model
(SAM) [15] and its variants [12, 21, 34] generate multiple
segmentation masks such that they have spatial relation-
ships where each mask either contains another segmenta-
tion or is contained within another segmentation. As dis-
cussed in the Section 1, our work extends this latter work
by introducing a method that can generate consistent object-
level masks regardless of where the user clicks.

Weakly-Supervised Interactive Segmentation. Weak
supervision has been used for both single-output and multi-
output interactive segmentation methods in order to reduce
reliance on costly, dense pixel-level annotations.2 For in-
stance, MultiSeg [20] uses neighboring objects, such as a
person riding a horse, to train scale-aware segmentation,
achieving more diverse outputs. SAM [15] adopts a model-
in-the-loop approach with iterative human refinements, pro-
ducing object, part, subpart, and background masks with-
out explicit semantic labels. Extensions of SAM emphasize
uncertainty quantification in pseudolabels for training [21],
or similar weakly supervised strategies for video segmenta-
tion [31], which are orthogonal to our task, as they either
leverage epistemic uncertainty to refine existing segmenta-
tions or focus on segmenting regions in videos—both typi-
cally relying on a single model output. In contrast, our work
focuses on enhancing consistency across multiple segmen-
tation outputs. FocalClick [2] and DIG [27] use superpixel
degradations to generate imperfect masks such that mod-
els can learn to perform corrections. However, these weak
supervision strategies usually emphasize objects without in-
corporating hierarchical labels (e.g., object and part). As a
result, they cannot enforce that different clicks on the same
object should yield the same object-level mask. Figure 1(a)
illustrates this limitation: because the training data does not
model part-whole relationships, clicking on different parts
of the same object produces inconsistent object-level masks.
To incorporate hierarchical relationships into training, we
propose converting existing object segmentation datasets
into part-level annotations. We leverage SAM’s automatic
mask generation, which partitions each image into mean-
ingful regions, and then treat these regions that fall within
an object’s ground truth mask as its parts. This approach
provides weakly supervised part annotations that preserve
part-whole relationships. This strategy can enable multi-
output interactive segmentation models to generate seman-
tically consistent outputs, such as consistently placing the
best object segmentation in the first mask and its part in

2Also related are open-vocabulary segmentation methods which rely on
weak supervision [10, 17, 33]. However, to our knowledge, none of these
methods address our task of generating consistent segmentation outputs in
a predictable hierarchical structure with objects and parts in interactive,
click-based scenarios.
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the second, while also improving robustness to initial click
placement.

3. Method
We now introduce our conSAMmé framework, which in-
corporates several design innovations to the Segment Any-
thing Model (SAM) [15], as summarized in Figure 2. In
what follows, we describe the model architecture, training
approach, and training data generation process.

3.1. Background: SAM

Our proposed framework leverages SAM’s powerful archi-
tecture, which operates in two distinct modes: single-mask
mode where a single segmentation mask is produced and
multi-mask mode where three masks are generated to reflect
potential ambiguities inherent in user prompts. It consists
of three key modules: a Vision Transformer [5] (ViT) to
encode the image, another set of parameters to encode the
input geometric prompts (e.g., clicks and rectangles), and
a transformer decoder to decode the resulting features into
segmentation masks by using bi-directional attention be-
tween prompt tokens and image embeddings. More specifi-
cally, each mask is generated by taking the dot product be-
tween a vector derived from the token-to-image attention
outputs and the upsampled image-to-token attention fea-
tures. Formally, the mask multidimensional array, M, is
constructed as:

M = σ(FT ⊤), (1)

where σ denotes the sigmoid function, F ∈ R(H·W )×32

represents the upsampled image-to-token features (with H
and W being the spatial dimensions of the image), and
T ∈ R4×32 is the MLP outputs from the token-to-image
attention layers. The authors of SAM refer to each of these
rows as output mask tokens as they are responsible for com-
bining the feature of M to form a coherent mask. After
computingM, it is reshaped into a multidimensional array
with dimensions H×W × 4 and then thresholded to obtain
the final binary masks. In Section 3.2, we elaborate on how
we leverage the row vectors in T to enhance consistency
during training.

3.2. conSAMmé Framework

The core contributions of our work is its training approach,
which is designed to enforce consistent mask ordering by
incorporating contrastive learning and utilizing an episodic
click sampling strategy.

Mask Ordering Guidance. We introduce a loss func-
tion to enforce an explicit ordering for masks output by the
model. Specifically, we supervise the first mask output, de-
noted as m̂1, to be an object-level segmentation and the sec-
ond mask output, m̂2, to be a part-level segmentation. We

compute the loss as a weighted sum of focal and dice losses,
as done in SAM [15], formally expressed as:

Lsam =
∑

(ŷ,y)∈Ω

[20 · Focal(ŷ, y) +DICE(ŷ, y)] , (2)

where Ω = {(m̂1,mo), (m̂2,mp)}; m̂1, m̂2 ∈ [0, 1]H×W

represents the predicted masks for the object and its parts re-
spectively; and mo, mp ∈ {0, 1}H×W denotes the ground-
truth masks for the object and its parts respectively. This
formulation not only enforces the desired hierarchical or-
dering, with object masks always supervised in the first po-
sition and part masks in the second, but also reinforces that
different parts of an object should share the same object-
level mask. This standardized evaluation encourages repro-
ducible results, which random clicks do not provide.

Click Sampling. We further encourage the model to learn
different parts should share the same object mask with an
episodic click sampling strategy. This approach contrasts
the status quo [2, 15, 32, 36] of generating synthetic clicks
by sampling points randomly within an object during train-
ing. For any object with n parts, we generate an episode (a
set of user clicks for both the object and its parts) of posi-
tive clicks indicating content we wish to segment, denoted
by Ec = {c+1 , c

+
1 , . . . , c

+
n }, with each click corresponding

to a different part. During training, these clicks are sam-
pled randomly from the ground-truth regions of each part.
Then, aligning with the status quo of interactive segmenta-
tion [32, 34, 36], evaluation relies on using the center points
of the objects.

Part-Object Contrastive Learning. To enhance the
model’s ability to capture the relationships between objects
and their constituent parts, we introduce a contrastive loss
on the token-to-image attention vectors produced by SAM’s
mask decoder (i.e., the matrix T in Equation 1). Our intu-
ition is that clicks corresponding to different parts of the
same object should yield similar object-level representa-
tions while exhibiting distinct part-level representations.

Concretely, consider an image for which we have an
episodic set of clicks, Ec. For each click ci ∈ Ec (alongside
an input image), the mask decoder produces a correspond-
ing token-to-image attention output:

Ti ∈ RK×d, (3)

where K is the number of token outputs (K = 4 in SAM)
and d is their dimensionality (with d = 32 in our exper-
iments). We assume the second3 row of Ti represents the
object-level feature and a designated subsequent row (i.e.,

3The first row of T corresponds to the single mask mode in SAM.
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Figure 2. Overview of our proposed conSAMmé framework. Given an episode of clicks on an image, such as a click on the head and
arm of a person as shown above, we encode the image and click and feed each of those features into a mask decoder. We then perform
contrastive learning on the mask tokens produced from the token to image attention MLP layers. For the masks produced by each of the
clicks, we supervise the first position with the object ground truth and the second with a weakly supervised part mask.

the third row) represents the part-level feature. We denote
these as:

τoi ∈ Rd and τpi ∈ Rd. (4)

For any two distinct clicks ci and cj (with i ̸= j) on
different parts of the same object, we aim for the similar-
ity between their object-level features to be high while the
similarity between their part-level features to be relatively
lower. To enforce this, we define a contrastive loss for the
pair (i, j) as:

ℓcon(i, j) = max
(
µ−

[
sim

(
τoi , τ

o
j

)︸ ︷︷ ︸
want: large

− sim
(
τpi , τ

p
j

)︸ ︷︷ ︸
want: small

]
, 0

)
,

(5)
where sim(·, ·) denotes cosine similarity and µ is a margin
hyperparameter (set to 0.5 in our experiments). We sub-
tract part similarity from object similarity to directly opti-
mize for greater intra-object consistency and greater inter-
part distinctiveness. The margin (µ = 0.5) was chosen
to reflect a balanced threshold between over-clustering and
under-separating representations and was selected based on
early experiments. Averaging over all distinct pairs yields
the overall contrastive loss:

Lcon =
1

|P|
∑

(i,j)∈P

ℓcon(i, j), (6)

with

P = {(i, j) | i, j ∈ {1, 2, . . . , n}, i ̸= j}. (7)

The total loss optimized during training is then a
weighted sum of the segmentation loss Lsam and the con-
trastive loss:

Ltotal = Lsam + λLcon. (8)

We follow prior work that weights auxiliary losses less
heavily than the primary segmentation loss [39] and set λ
to 0.5 in our experiments.

The hyperparameter values for µ and λ were selected to
balance contrastive and segmentation objectives and were
found to perform well across datasets. We briefly explored
variations during the early stages and found results were not
highly sensitive to small changes.

3.3. Training Data Generation

Part segmentation data is needed both for out-of-
distribution generalization evaluation and training data.
Given the scarcity of part segmentation datasets, we adopt a
weakly supervised approach to generate such data: it lever-
ages existing object segmentation datasets to derive part-
level annotations via an automated process, thereby bypass-
ing the need for costly manual labeling. It is inspired by
SAM’s granularity-agnostic, model-in-the-loop training ap-
proach, where SAM iteratively refines its own predictions.
We instead extend this framework to facilitate the learning
of granularity-ordered outputs.

At a high level, our approach operates as follows. Given
an image and its associated object segmentation(s), we first
employ SAM’s automatic mask generation4 (AMG) capa-
bility (using a grid size of 32) to produce candidate seg-
mentations for all relevant regions of the image. For each
object ground truth, we then derive weak part annotations
by performing an element-wise multiplication of the bina-
rized object mask with the corresponding AMG mask. This
operation isolates regions within the object that are likely to
correspond to distinct parts. To facilitate our episodic train-

4We use the most powerful variant of SAM, ViT-H [5] for generation
to maximize quality.
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Figure 3. Example of our proposed method for generating weakly-
supervised part segmentation data. Given an image (a) and its
corresponding object mask (b), we use SAM’s automatic mask
generator to generate region segmentations (c). We then element-
wise multiply the binary object mask with the region segmentation
mask to generate part segmentations (d).

ing framework receiving a robust supervisory signal, which
requires multiple parts per object, we discard candidate part
segmentations lacking at least two distinct parts. A high-
level overview of our approach is provided in Algorithm 1,
with an illustration in Figure 3.

Algorithm 1 Weakly Supervised Part Segmentation
Training Data Generation

1: masks← [ ] // Initialize empty list
2: MAMG ← gen AMG mask(I) // Generate AMG mask

from image
3: for mo in {mo} do
4: mp ← mo ⊙MAMG // Compute part segmentation
5: if num parts(mp) > 2 then
6: masks.append(mp) // Add valid mask
7: end if
8: end for
9: return masks // Return final masks list

4. Experiments

We now assess the performance of our proposed con-
SAMmé framework and ablate specific design choices to
highlight their importance.

4.1. Experimental Design

We evaluate our framework by simulating a single positive
click placed on a given part. Traditional interactive segmen-
tation experiments are designed to iteratively correct model
mistakes. However, in our multi-output setting, that is less
applicable as we focus on generating the correct set and or-
dering of outputs, rather than optimizing for the single most
correct output. From a single click on the middle of a part,
we measure models’ abilities to correctly output an object
in the first output, and the desired part in the second output.

Baselines. We adopt the Segment Anything Model
(SAM) as our baseline since our framework extends it5. We
also adopt another variant of SAM, HQ-SAM [12], which
is a high-quality adaptation that improves mask accuracy by
incorporating a fine-grained segmentation head and lever-
aging high-resolution features. We use the ViT-B [5] ver-
sions of both baselines. To ensure a fair comparison, we
sort the baseline’s multimask outputs in descending order
by size (i.e., number of mask pixels). The underlying intu-
ition is that the object-level mask typically covers the largest
amount, while a part-level mask is expected to occupy the
second largest amount. While MultiSeg [20] could be an-
other valuable baseline, its code is not publicly available.

Implementation Details. We implement our conSAMmé
framework using the ViT-B version of SAM. We train con-
SAMmé for 10 epochs with a batch size of 8 episodes and
set the maximum number of masks in an episode to 32. We
use the AdamW [24] optimizer with β1 = 0.9, β2 = 0.99
with a learning rate of 1e − 5. We fully fine-tune the
mask decoder and freeze the prompt encoder. For the im-
age encoder, we employ a layer-wise learning rate strategy,
adopted from [21]. This learning rate scheduling strategy
applies a layer-wise decay approach, where the learning rate
decreases by a factor of 0.8 for each successive layer of the
image encoder, starting from the initial learning rate. Layers
closer to the input receive smaller learning rates, encourag-
ing stable feature extraction, while higher layers and non-
encoder components (e.g., heads and necks) retain higher
learning rates for faster adaptation. Additionally, weight
decay is applied selectively, with no decay applied to nor-
malization and bias parameters. To perform model selec-
tion, we retain the model with the best validation loss. We
perform training on 8 NVIDIA A100 GPUs.

Datasets. For training, we leverage the training sets of
EntitySeg [29] and HQ-Seg [12] because they complement
each other: EntitySeg features 33,227 scenes with diverse
object categories at varying scales, while HQ-Seg contains
44,320 images with salient regions, a common scenario in
interactive segmentation, such as portrait photography [14].
In our experiments, we randomly allocate 80% of each
dataset for training our conSAMmé framework and reserve
the remaining 20% for validation. Of note, this additional
data represents only ∼0.7% additional training data com-
pared to the training data used for SAM.

For evaluation, we test models in a zero-shot setting
on three popular part segmentation benchmarks: Pascal
Part [1] (which provides annotations across scenes with

5While SAM2 [31] could be adapted for our task, we build on SAM
due to its lower computational overhead and comparable performance on
static images.

763



Method Pascal Part [1] PartImageNet [9] PACO [30]

mIoUObj ↑ mIoUPart ↑ CVR@0.5 ↓ mIoUObj ↑ mIoUPart ↑ CVR@0.5 ↓ mIoUObj ↑ mIoUPart ↑ CVR@0.5 ↓
SAM [15] 69.73 25.67 45.83 64.05 37.78 35.44 20.50 25.11 44.19
HQ-SAM [12] 70.02 24.48 44.32 64.56 36.72 33.38 20.02 23.63 43.56
conSAMmé 71.95 36.11 32.21 76.27 42.99 17.43 21.52 35.92 40.56

Table 1. Experimental results of SAM vs. conSAMmé on three popular part segmentation datasets. Overall, conSAMmé outperforms
SAM with respect to both segmentation quality and mask consistency. All results are zero-shot.

single and multiple objects), PartImageNet [9] (which of-
fers part segmentations for 11 objects categories), and
PACO [30] (which features high-quality annotations with a
long tail of categories). We use the validation sets of Pascal
Part and PACO, and the test set of PartImageNet, consisting
of 4772, 9443, and 4598 images, respectively. This diverse
evaluation suite enables us to assess the generalization of
models across varying segmentation challenges.

Evaluation Metrics. To evaluate segmentation accuracy,
we compute the mean Intersection-over-Union (mIoU) for
both object- and part-level predictions overall all samples,
where a click is placed at the center of a part and the object
prediction comes from the first mask and the part comes
from the second in a multi-output setup. IoU scores range
from 0 (no overlap) to 1 (perfect overlap).

In addition, we introduce the Consistency Violation Rate
(CVR) to quantify the consistency of the model’s hierarchi-
cal semantics (i.e., does the model recognize that all parts
belong to the same object?). In other words, we assess the
model’s ability to consistently group distinct parts as be-
longing to the same object. Moreover, this metric measures
how robust a model is to the initial click by checking if sim-
ilar inputs provide similar outputs. For an object with n
parts, we simulate a click on each part and collect the cor-
responding object-level mask predictions, forming a set M .
After thresholding these masks at 0.5, we compute the pair-
wise IoU between every two masks in M . If the IoU be-
tween a pair is below a threshold δ, we count that as a con-
sistency violation. The CVR is then defined as the fraction
of such violations over all possible mask pairs:

CVR(M) =
1(|M |
2

) ∑
i<j

1
[
IoU

(
M [i],M [j]

)
< δ

]
, (9)

where 1 is the indicator function that returns 1 when the
IoU is less than δ and 0 otherwise, and M [i] denotes the
mask corresponding to the ith part. We set δ = 0.5 to bal-
ance precision and recall, in line with common practices in
evaluation metrics such as mean average precision (mAP).
Values range from 0 (all parts have a similar object mask)
to 1 (all parts have no similar object masks).

4.2. Results

Results across the three datasets are shown in Table 1. We
now analyze these results with respect to segmentation qual-
ity, accuracy, and mask ordering.

Results with respect to segmentation quality. For seg-
mentation performance, we first notice that conSAMmé
outperforms SAM across all granularities. Interestingly,
the largest gains appear in part-level segmentation, even
though we allocate more supervision to objects (if an object
has n parts, we apply the loss to the same object ground
truth n times). A plausible explanation for this paradox
is that SAM was already strong at object-level segmenta-
tion, whereas conSAMmé adds explicit part distinctions via
contrastive loss and our episodic click strategy. Repeatedly
training on the same object through different part clicks
forces the model to learn a consistent and finely detailed
object boundary, because it sees multiple views (i.e., results
from different part clicks) of the object in each episode. In
tandem, the part–object contrastive loss ensures that differ-
ent parts of the same object learn distinct feature compo-
sitions, leading to finer intra-object delineations. Conse-
quently, while object masks also benefit from the enhanced
supervision, part segmentation sees especially pronounced
improvements due to the explicit supervision.

When examining results per dataset, we observe seg-
mentation performance scales with relative saliency. The
highest performance is observed for PartImageNet, which
contains only one salient object per image. Intermediate
performance is observed for Pascal Part, which features
multiple objects with varying saliency. The lowest perfor-
mance is observed for PACO, which includes many objects
with lower saliency. This ordering holds for all granulari-
ties and consistency measures. A plausible explanation is
that less salient regions often occupy fewer pixels, so even
small boundary misclassifications can have a larger effect
on Intersection-over-Union scores. Interestingly, PACO is
the only dataset in which object-level IoU is lower than
part-level IoU. One possible explanation is that PACO’s ob-
ject labels can be more visually ambiguous, such as a table
full of food, making it more difficult for the model to ac-
curately delineate the full object boundary without includ-
ing unwanted content. In contrast, certain parts might be
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Method Pascal Part [1] PartImageNet [9] PACO [30]

mIoUObj ↑ mIoUPart ↑ CVR@0.5 ↓ mIoUObj ↑ mIoUPart ↑ CVR@0.5 ↓ mIoUObj ↑ mIoUPart ↑ CVR@0.5 ↓
conSAMmé-Vanilla 70.11 36.17 32.65 76.19 42.78 17.06 21.37 36.63 42.40
conSAMmé 71.95 36.11 32.21 76.27 42.99 17.43 21.52 35.92 40.56

Table 2. Comparison of conSAMmé with and without contrastive learning (conSAMmé-Vanilla). We observe that contrastive generates
more performant object segmentations, while increasing consistency in complex scenes.

Figure 4. Stacked bar chart showing relative frequency of object
mask placement across three output positions. conSAMmé con-
sistently places the object mask in the first position, while SAM
and HQ-SAM show greater variability, distributing the mask more
evenly across positions.

more visually distinct (for instance, a smaller, more texture-
specific or shape-specific region such as a table leg), making
them easier to segment despite lower saliency. This differ-
ence could lead to instances where part-level segmentation
outperforms object-level segmentation in terms of IoU.

Analysis with respect to segmentation consistency.
Across all datasets, conSAMmé consistently outperforms
the baselines in consistency, as measured by the CVR met-
ric. On average, it produces similar object masks for each
part when prompted with a click. For instance, on PartIm-
ageNet, conSAMmé nearly doubles the consistency perfor-
mance compared to the next best baseline, HQ-SAM. This
suggests conSAMmé’s outputs are less sensitive to click lo-
cation. We attribute this robustness to our episodic click
sampling strategy, which trains the model to segment from
varied click positions using only a single click. Unlike tra-
ditional methods that optimize for minimal clicks to reach a
target IoU, our approach focuses on maximizing initial IoU,
potentially reducing user effort during refinement.

Consistency, like segmentation quality, scales with
dataset saliency. PartImageNet, composed of salient re-
gions, shows the highest consistency, followed by Pascal
Part and PACO. Lower saliency correlates with cluttered or
complex scenes, which hinders object distinction and in-
creases variability across clicks, reducing consistency.

Analysis with respect to mask ordering. To assess how
consistently each model places object and part masks in
their intended positions, we sort the outputs by size and use
Hungarian Matching [16] to identify the best match to each
ground truth object and part. We focus on PartImageNet,
where overall segmentation performance is stronger than in
PACO, so we can isolate the issue of mask ordering. We
plot the relative frequency with which each method posi-
tions the object mask across its available output positions.
Results are shown in Figure 4. Although many methods
only produce two masks for part-object segmentation, SAM
and its variants can output three, meaning the object mask
could appear in the last position as well.

Among all methods, conSAMmé is the only one that
nearly always locates the object mask in the first position
(about 99% of the time). By contrast, SAM places the ob-
ject mask first 74% of the time, second 24%, and occa-
sionally last. HQ-SAM shows a similar pattern. This vari-
ability suggests that users of baseline methods may have to
search among multiple masks to find the desired granularity.
By contrast, conSAMmé not only boosts consistent object
placement but also maintains a coherent hierarchy for parts,
as reflected in its lower CVR scores. This consistency can
reduce user overhead, since the same output positions can
almost always be associated with specific hierarchy levels.

Qualitative Results. We show examples of how each
method responds to clicks on different parts of an object
in Figure 5.

These qualitative results reinforce the quantitative obser-
vation that conSAMmé yields more consistent and precise
object masks, independent of click location. In the first
two rows, clicking on the bird’s head leads all methods
to correctly segment the object, but SAM and HQ-SAM
mistakenly include the floor when the click is on the tail.
In contrast, conSAMmé produces consistent masks across
both clicks, omitting irrelevant regions, and instead staying
within ground truth boundaries when mistakes are made.
A similar trend appears in the complex cat scene: clicks
on the head cause SAM and HQ-SAM to include parts of
the computer, whereas conSAMmé accurately segments the
cat. All methods perform well when the click is on the cat’s
feet. For part segmentation, conSAMmé successfully iso-
lates specific parts (e.g., head/tail of the bird, feet/head of
the cat), while baseline methods include extraneous content.
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Figure 5. For both a single-object scene (a bird) and a complex scene, clicking on different parts yields varying masks with SAM and HQ-
SAM: e.g., the floor is included when clicking the bird’s tail but not its head. In contrast, conSAMmé produces consistent masks across
clicks and achieves superior part segmentation. For the complex scene, segmented regions are cropped and scaled for clearer visualization.

Still, conSAMmé has some minor errors. For example,
occasionally, it slightly misses parts of objects such as the
bird’s feet when the head is clicked, which we hypothesize
could be a result of their small size. We hypothesize that
performance could be further improved with more part an-
notations during training.

4.3. Model Design Analysis

To analyze the effectiveness of the contrastive learning por-
tion of our proposed framework, we compare our approach
against a baseline: conSAMmé without the addition of con-
trastive learning (i.e., only optimizing Equation 2). We call
this conSAMmé-Vanilla. We provide results on all three
datasets in Table 2. We note that both conSAMmé and con-
SAMmé-Vanilla outperform SAM with respect to both per-
formance and consistency, highlighting the effectiveness of
our framework components.

Effect of Contrastive Learning on Performance. When
evaluating conSAMmé’s segmentation performance, we ob-
served mixed outcomes. In every setting, conSAMmé
achieved superior object segmentation, with the most sub-
stantial improvements on Pascal Part, which features mul-
tiple salient regions. However, its part-level performance
declined slightly. We hypothesize that hierarchical condi-
tioning may bias the model toward object-level consistency,
leading to less attention on finer part boundaries. This trade-
off suggests that while hierarchical cues enhance robust-
ness for larger entities, refining the quality of our weakly
supervised part-level data is a valuable direction for future
work to boost part segmentation, particularly since our con-
trastive loss relies on that supervision signal.

Effect of Contrastive Learning on Consistency. On Pas-
cal Part and PACO, conSAMmé achieves more consis-
tent outcomes, with larger gains on PACO. The contrastive
learning framework improves robustness to variations in
click positions on an object. On PartImageNet, which con-
tains only one salient object, conSAMmé shows a slight de-
crease in object consistency. In simpler scenes, contrastive
learning offers fewer advantages and introduces minor over-
head that reduces overall consistency.

Despite the slight reduction on PartImageNet, con-
SAMmé delivers substantial gains on complex, multi-object
datasets like Pascal Part and PACO. In these scenarios, mul-
tiple salient regions and varying object scales increase the
likelihood of errors when methods rely solely on scale cues.
By conditioning on hierarchical semantics, conSAMmé
handles diverse object configurations more robustly, main-
taining coherent segmentations when clicks differ across
parts of the same object.

5. Conclusion

We present conSAMmé, a weakly supervised, contrastive
framework that enhances consistency in multi-output in-
teractive segmentation. Our method leverages an episodic
click sampling strategy so that similar clicks, such as those
on an object’s part, produce a comparable output mask, such
as the object itself. We also introduce a new evaluation met-
ric for measuring model consistency and show that condi-
tioning on hierarchical semantics yields more robust, coher-
ent results than baseline methods.
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