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Figure 1. An overview of the proposed FUSION pipeline, illustrating the dual-domain (spatial and frequency) processing, contextual

attention refinement, and final channel calibration for UIE.

Abstract

Underwater images suffer from severe degradations, includ-
ing color distortions, reduced visibility, and loss of struc-
tural details due to wavelength-dependent attenuation and
scattering. Existing enhancement methods primarily focus
on spatial-domain processing, neglecting the frequency do-
main’s potential to capture global color distributions and
long-range dependencies. To address these limitations, we
propose FUSION, a dual-domain deep learning framework
that jointly leverages spatial and frequency domain infor-
mation. FUSION independently processes each RGB chan-
nel through multi-scale convolutional kernels and adap-
tive attention mechanisms in the spatial domain, while si-
multaneously extracting global structural information via
FFT-based frequency attention. A Frequency Guided Fu-
sion module integrates complementary features from both
domains, followed by inter-channel fusion and adaptive
channel recalibration to ensure balanced color distribu-
tions. Extensive experiments on benchmark datasets (UIEB,
EUVP, SUIM-E) demonstrate that FUSION achieves state-
of-the-art performance, consistently outperforming existing

methods in reconstruction fidelity (highest PSNR of 23.717
dB and SSIM of 0.883 on UIEB), perceptual quality (low-
est LPIPS of 0.112 on UIEB), and visual enhancement met-
rics (best UIQM of 3.414 on UIEB), while requiring signif-
icantly fewer parameters (0.28M) and lower computational
complexity, demonstrating its suitability for real-time un-
derwater imaging applications.

1. Introduction

Underwater imaging plays a crucial role in fields like ma-

rine biology, underwater archaeology, and autonomous un-

derwater vehicle (AUV) navigation. However, it faces chal-

lenges such as light absorption and scattering, leading to

low contrast, color casts (bluish and greenish hues), and

blurriness, which hinder high-level vision tasks like ob-

ject detection and segmentation [3, 9, 16]. Traditional un-

derwater image enhancement (UIE) methods, such as his-

togram equalization and dehazing algorithms, struggle with

the complex degradations in underwater environments [17].

Advanced cameras also fail to address non-uniform light at-

tenuation, where shorter wavelengths like blue and green
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penetrate deeper underwater, distorting color balance and

reducing task performance [25].

Deep learning-based techniques have recently shown

promise in low-level vision tasks. State-of-the-art under-

water image restoration (UIR) methods often use iden-

tical receptive field sizes for R-G-B channels, ignoring

wavelength-dependent degradation patterns. Sharma et al.

[18] demonstrated that varying receptive field sizes (e.g.,

R(3 × 3), G(5 × 5), B(7 × 7)) improves UIR by captur-

ing local and global features. Encoder-decoder networks

commonly used in UIR capture broad contexts but lose spa-

tial details during downsampling [19, 36]. High-resolution

networks avoid downsampling but struggle with encoding

global context needed for coherent enhancement. Most UIR

methods focus solely on spatial-domain processing, over-

looking long-range dependencies and global color distribu-

tions essential for effective UIE.

To address these limitations, we propose FUSION:

Frequency-guided Underwater Spatial Image recONstruc-

tioN—a dual-domain framework tailored for underwater

image enhancement. FUSION integrates spatial and fre-

quency domain processing through four key modules: the

Multi-Scale Spatial Module processes RGB channels using

dedicated kernel sizes to handle wavelength-dependent at-

tenuation; the Frequency Extraction Module refines mag-

nitude information to capture global structural cues; the

Frequency-Guided Fusion (FGF) Module combines spatial

and frequency features for balanced local detail and global

color consistency; and the Inter-Channel Fusion and Chan-

nel Calibration Module uses global attention and adaptive

scaling to produce enhanced images with balanced color

distribution.

Our dual-path architecture (Figure 1) processes RGB

channels (DR, DG, DB) independently. Spatial features are

refined using multi-scale convolutions and attention mecha-

nisms, while frequency features are extracted using Fourier

analysis to capture global information. Spatial-frequency

features are fused via FGF blocks for each channel before

inter-channel fusion integrates RGB dependencies. A de-

coder stage with deconvolutional layers, attention mecha-

nisms, residual connections, and adaptive recalibration bal-

ances RGB channels to produce enhanced images with im-

proved visibility, color accuracy, and detail preservation.

To summarize, our contributions are as follows:

• Dual-Domain Enhancement: We introduce a parallel

frequency pathway that captures long-range dependencies

and global color distributions, complementing traditional

spatial processing.

• Dedicated Frequency Attention Module: By preserv-

ing original phase while applying adaptive attention to the

magnitude spectrum, our method captures global struc-

tural information critical for handling complex underwa-

ter degradations.

• Inter-Channel Calibration for Color Correction: A

global recalibration stage, which employs learnable scal-

ing factors to balance color intensities adaptively.

2. Related Works

2.1. Underwater Image Enhancement
Traditional methods for UIE have relied on image process-

ing techniques such as histogram equalization, white bal-

ance adjustment, and dehazing algorithms based on physi-

cal models of light propagation underwater [4, 7, 12]. While

these methods can enhance contrast and correct color casts

to some extent, they generally lack adaptability to varying

underwater conditions and often fail to restore fine details

and textures. Li et al. proposed a dehazing and color correc-

tion method using convolutional neural networks (CNNs)

that leverage the statistical properties of underwater im-

ages [12]. FUnIE-GAN and Water-Net have shown promis-

ing results by learning mappings from degraded images

to their enhanced counterparts using generative adversarial

networks (GANs) [22, 37].

There exists minimal literature on frequency-based

methods for image enhancement, with no prior applica-

tion to underwater imaging. Kersting et al. used a GAN-

based approach to enhance ultra-fast PSMA-PET scans via

synthetic reconstruction, showing improved detection in

prostate cancer staging [11]. Liu et al. applied frequency

decomposition in PID2Net for underwater descattering and

denoising, though not explicitly using frequency-domain

learning [23]. Li et al. fused polarization cues with wavelet-

based subband processing to improve defect visibility on

reflective surfaces [21]. Agaian et al. proposed transform-

based enhancement using orthogonal bases like Fourier and

Hadamard with quantifiable performance metrics [1]. Wang

proposed a parallel frequency-domain low-light framework

that decouples contrast and structure restoration [32], while

Wang et al. designed FourLLIE, leveraging Fourier am-

plitude mappings and SNR-guided fusion for efficient low-

light enhancement [31].

2.2. Attention Mechanisms in Image Enhancement
Attention mechanisms are integrated into deep learning

models to improve feature representation by focusing on the

most informative parts of the input. In the context of im-

age enhancement, attention modules can help models learn

where to emphasize or suppress features, leading to better

restoration of degraded images.

Chen et al. introduced an attention-based UIE method

that employs a multi-scale attention mechanism to adap-

tively enhance features at different resolutions [22, 37].

Similarly, Li et al. utilized channel attention in their net-

work to weigh the importance of different feature maps,

improving the overall enhancement quality. While these
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methods have shown effectiveness, they often increase the

model’s complexity and computational load [12, 33].

2.3. Shortcomings Addressed

The primary limitation in current underwater image restora-

tion and enhancement approaches is that they focus pre-

dominantly on spatial-domain processing, overlooking the

frequency domain’s ability to capture global color distribu-

tions and long-range dependencies. This omission often re-

sults in residual color imbalances and artifacts, especially

under severe wavelength-dependent attenuation [33]. Ad-

ditionally, certain models that are able to capture these do-

mains (like Fine-tuned GANs) require very heavy computa-

tional power, which makes them not viable for deployment

and scalability scenarios [12]. Our proposed FUSION ad-

dresses these issues through a dual-domain design that ef-

ficiently processes each color channel in both spatial and

frequency domains while having a quick inference time and

low-memory compute. By incorporating multi-stage and

multi-domain attention mechanisms with channel-wise re-

calibration, FUSION also preserves fine details, reduces ar-

tifacts, and balances color distributions.

3. Proposed Method: FUSION

The proposed architecture enhances underwater images

through a dual-path framework that integrates spatial do-

main processing and frequency domain processing. The in-

put image Dh×w×3 is split into three independent channels,

DR, DG, and DB , which are processed separately in both

domains to extract complementary features.

In the spatial domain, each channel undergoes multi-

scale convolution with kernel sizes 3× 3, 5× 5, and 7× 7
to capture features at varying receptive fields. This en-

sures that color-specific distortions are addressed indepen-

dently, preventing the propagation of noisy features while

preserving crucial wavelength-driven contextual informa-

tion, as suggested in [29]. These features are refined us-

ing a Channel and Spatial Attention Module (CBAM) and

residual connections to preserve information.

In parallel, frequency domain features are extracted by

transforming each channel into the frequency domain using

a 2D Fast Fourier Transform (FFT). The magnitude of the

frequency representation is processed using 1× 1 convolu-

tional layers and refined with a Frequency Attention mech-

anism. The inverse FFT (IFFT) reconstructs these features

back into the spatial domain.

The outputs from the spatial (f3
R/G/B,...) and frequency

(freqR/G/B,...) domains are fused using FGF blocks. Fi-

nally, the fused features are passed through a decoder with a

global attention (CBAM) and channel recalibration to adap-

tively balance RGB channels, producing the enhanced un-

derwater image Eh×w×3.

3.1. Spatial Domain Processing
The spatial domain processing path extracts features from

each channel of the input image Dh×w×3 by leveraging

multi-scale feature extraction, attention mechanisms, and

residual refinement. Each channel, DR, DG, and DB , is

processed independently to capture spatial patterns at mul-

tiple scales {s1, s2, s3}.

Initially, feature maps f1
i = Φi(Di) are extracted from

each channel i ∈ {R,G,B} using convolutional operations

with varying receptive fields. Specifically, f1
R represents

the features extracted from the red channel using kernel size

3×3, while f1
G and f1

B are obtained with 5×5 and 7×7 ker-

nels, respectively. This multi-scale extraction {f1
R, f

1
G, f

1
B}

enables the network to capture hierarchical features across

the feature dimension with varying spatial contexts.

To enhance these features, a two-stage attention mecha-

nism A = Ac◦As is applied independently to each channel.

In the first stage, channel attention Ac aggregates global in-

formation by computing scaling weights Wchannel based on

pooled statistics of the feature map:

Wchannel = σ
(
W2 · φ(W1 · g(f1

i ))
)

(1)

Here g(f1
i ) represents global average pooling, φ(·) imple-

ments ReLU activation, and W1, W2 are learnable weight

matrices with reduction ratio r. The feature map is then

scaled element-wise as fchannel-att = Wchannel � f1
i .

In the second stage, spatial attention As refines these

channel-weighted features by focusing on spatially signif-

icant regions through attention mapping. This is achieved

by computing spatial attention weights:

Wspatial = σ
(
h(fchannel-att)

)
(2)

h(fchannel-att) = ψ
(
[Pavg(fchannel-att);Pmax(fchannel-att)]

)

(3)

The function h aggregates information across channels via

concatenated max and average pooling operations, followed

by a spatial transformation. The final attention-refined fea-

ture map is given by fspatial-att = Wspatial � fchannel-att.

After applying both attention mechanisms, the refined

feature maps for each channel are denoted as f2
i =

A(f1
i ) = As(Ac(f

1
i )) for i ∈ {R,G,B}. To preserve orig-

inal spatial information and improve gradient flow during

training, residual connections are added:

f3
i = f2

i + f1
i ∀i ∈ {R,G,B} (4)

These skip connections ensure that low-level features are

preserved throughout the network while allowing the learn-

ing of residual mappings. The outputs, f3
R, f3

G, f3
B , repre-

sent the final spatial representations for each channel after
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Figure 2. Overview of our proposed FUSION architecture for UIE. The model takes a degraded underwater image as input and restores it

with enhanced visual quality.

multi-scale feature extraction, attention-based refinement,

and residual enhancement.

By processing each color channel independently, we ad-

dress the unique degradation patterns in underwater im-

ages where different wavelengths of light are attenuated at

rates dependent on depth and water properties. The multi-

scale feature extraction with varying kernel sizes is specif-

ically designed to capture the diverse spatial characteristics

present in underwater scenes, from fine-grained textures to

broader structural elements.

3.2. Frequency Domain Processing
The frequency domain processing path complements the

spatial domain by extracting and refining frequency fea-

tures from each channel of the input image Dh×w×3. This

path leverages Fourier transforms, magnitude extraction,

frequency attention, and inverse reconstruction to capture

global contextual information that is often inaccessible in

the spatial domain.

Each channel, Di for i ∈ {R,G,B}, is independently

transformed into the frequency domain using a 2D Fast

Fourier Transform (FFT). For a given channel, the FFT pro-

duces a complex-valued representation Fi = F(Di) con-

taining both real and imaginary components. The magni-

tude of this representation is extracted as:

|Fi| =
√

Re(Fi)2 + Im(Fi)2 (5)

This magnitude |Fi| captures global structural information

about the input channel, where Re(Fi) and Im(Fi) denote

Figure 3. Architecture of the CBAM block [34]

the real and imaginary parts of the frequency representa-

tion. To refine these magnitude features, we apply a series

of transformations in the frequency domain. The magni-

tude map |Fi| undergoes linear transformations with learn-

able weight matrices W1 and W2 to reduce dimensionality

and enhance discriminative features:

F̂i = W2 · φ(W1 · |Fi|) (6)

These transformations incorporate PReLU activation

function φ(·) and are followed by normalization to stabi-

lize feature distributions across varying underwater condi-

tions. Since underwater images suffer from wavelength-

dependent attenuation that manifests differently in the fre-

quency spectrum, these transformations help isolate dis-

criminative frequency features that carry reliable informa-

tion about the scene. A Frequency Attention Module fur-
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ther enhances these features by computing attention weights

Wfreq for each channel:

Wfreq = σ(W4 · φ(W3 · g(|Fi|))) (7)

Here g(|Fi|) represents global average pooling, W3 and W4

are learnable weights, and σ(·) denotes sigmoid activation.

The refined magnitude map |Fi|refined = Wfreq � |Fi| adap-

tively amplifies important frequency components while sup-

pressing less informative ones. This attention mechanism

is particularly crucial for underwater imagery where cer-

tain frequency bands may be more degraded than others de-

pending on water properties and depth. The refined magni-

tude is then recombined with the original phase information

Θi = Phase(Fi) to reconstruct a complex-valued frequency

representation:

F ′
i = |Fi|refined · ej·Θi (8)

This phase preservation is essential as it maintains struc-

tural coherence while allowing magnitude enhancement.

The exponential phase term can be expressed as ej·Θi =

cos(Θi)+j ·sin(Θi) where Θi = arctan
(

Im(Fi)
Re(Fi)

)
. Finally,

an inverse FFT (IFFT) transforms the refined frequency rep-

resentation back into the spatial domain:

ffreq,i = F−1(F ′
i ) (9)

The resulting frequency-derived feature maps, ffreq,i for i ∈
{R,G,B}, capture global contextual information that com-

plements the localized details extracted in the spatial do-

main. These frequency features effectively represent long-

range dependencies between pixels and global color dis-

tributions, which are particularly valuable for underwater

image enhancement where visibility degradation affects the

entire image non-uniformly.

By processing frequency information independently for

each color channel, our approach addresses the channel-

specific degradation patterns common in underwater envi-

ronments, where red wavelengths attenuate more rapidly

than green and blue wavelengths with increasing depth ac-

cording to I(λ, d) = I0(λ)e
−β(λ)d [35].

3.3. Frequency Guided Fusion
We integrate spatial and frequency features through our

FGF blocks, which operate independently for each channel

(Red, Green, Blue). These blocks combine complementary

information from spatial domain (fspatial,i) and frequency

domain (ffreq,i) to produce fused features ffused,i for each

channel i ∈ {R,G,B}.

For each color channel, we first concatenate the spatial

feature map fspatial,i and the frequency feature map ffreq,i

along the channel dimension:

fconcat,i = C(fspatial,i, ffreq,i) (10)

This creates a unified representation containing both local

spatial details and global frequency characteristics crucial

for underwater image enhancement. We then transform the

concatenated feature map through a convolution operation:

ffused,i = Wi ∗ fconcat,i (11)

with learnable weights Wi to reduce dimensionality while

integrating the two complementary modalities. This ensures

that we preserve discriminative features from both domains

while managing computational complexity.

The outputs of our FGF blocks, ffused,i for i ∈
{R,G,B}, represent channel-specific fused representations

that combine both fine-grained spatial details and compre-

hensive frequency information, capturing both local tex-

tures and global color distributions.

3.4. Inter-Channel Fusion and Channel Calibration
In the final stage of our architecture, we refine the fused

feature representations from each RGB channel to pro-

duce the enhanced underwater image E. To ensure consis-

tency in feature representation while mitigating underwa-

ter distortions, we integrate residual enhancements, spatial-

frequency fusion, and adaptive recalibration.

First, we reinforce each fused feature map by adding

back the corresponding input channel, ensuring that the

residual information is preserved without disrupting learned

features:

fresidual,i = ffused,i + finput,i, i ∈ {R,G,B} (12)

We concatenate these residual-enhanced features to form

a unified representation fconcat, enabling our model to lever-

age inter-channel dependencies effectively. To increase fea-

ture expressivity and capture richer spatial characteristics,

we project this representation into a higher-dimensional fea-

ture space using transformation Td, yielding:

fd = φ(Td(fconcat)) (13)

where φ denotes a non-linear activation function. Parallel

to this, we extract frequency domain features ffreq,i for each

RGB channel to capture structural variations that may be

less evident in the spatial domain. These features are con-

catenated as ffreq, providing complementary information for

the fusion process. To effectively integrate spatial and fre-

quency domain representations, we apply a learned trans-

formation Tf :

ffusion = φ(Tf (fd, ffreq)) (14)

This allows us to capture localized textures and global

structures simultaneously, ensuring effective feature aggre-

gation. Since different regions of the image may require

varying levels of enhancement, we refine the fused features
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Figure 4. Visual comparisons on the UIEB dataset.

LitNet GTUShapeDWNetSGUIE-NetFUnIE-GANUGAN-PUGANCBFULAPDegraded FUSION (ours)IBLA

Figure 5. Visual comparisons on the EUVP dataset.

using a CBAM-based global attention mechanism A that

selectively emphasizes important regions:

fattn = A(ffusion, fconcat) (15)

The attention-refined representation undergoes trans-

formation through Te, reconstructing a coherent spatial

representation E = φ(Te(fattn)). However, this yields

pre-channel-calibrated reconstructions, which need further

color distribution balancing. To address this and mitigate

unwanted shifts, we implement an adaptive recalibration

mechanism that generates per-channel scaling factors:

Wcalibration = σ(W2 · φ(W1 · g(E))) (16)

where g(E) extracts global descriptors summarizing the im-

age’s color characteristics, and σ normalizes the scaling fac-

tors to maintain RGB channel balance. The final enhanced

image is obtained through element-wise calibration:

Efinal = E �Wcalibration (17)

This adaptive weighting scheme ensures a visually co-

herent and perceptually enhanced underwater image by dy-

namically adjusting color balance and preserving structural

details, mitigating common artifacts found in traditional en-

hancement techniques.

4. Results

Table 1. Evaluation on UIEB test set with the best-published

works for UIE. First, second, and third best performances are rep-

resented in red, blue, and green colors, respectively. ↓ indicates

lower is better.

Method PSNR SSIM LPIPS↓ UIQM UISM BRISQUE↓
UDCP [5] 13.026 0.545 0.283 1.922 7.424 24.133

GBdehaze [13] 15.378 0.671 0.309 2.520 7.444 23.929

IBLA [26] 19.316 0.690 0.233 2.108 7.427 23.710

ULAP [30] 19.863 0.724 0.256 2.328 7.362 25.113

CBF [2] 20.771 0.836 0.189 3.318 7.380 20.534

UGAN [6] 23.322 0.815 0.199 3.432 7.241 27.011

UGAN-P [6] 23.550 0.814 0.192 3.396 7.262 25.382

FUnIE-GAN [10] 21.043 0.785 0.173 3.250 7.202 24.522

SGUIE-Net [28] 23.496 0.853 0.136 3.004 7.362 24.607

DWNet [29] 23.165 0.843 0.162 2.897 7.089 24.863

Ushape [24] 21.084 0.744 0.220 3.161 7.183 24.128

Lit-Net [27] 23.603 0.863 0.130 3.145 7.396 23.038

FUSION (Ours) 23.717 0.883 0.112 3.414 7.429 23.193

Experimental Settings We first evaluate the performance

of our proposed FUSION framework on three widely used

underwater image datasets: UIEB [14], EUVP [10], and

SUIM-E [28]. All images across these datasets are re-

sized to a uniform resolution of 256×256 prior to training

and evaluation. For training, we utilize the EUVP dataset,

which contains 11,435 paired underwater images, while its

test set consists of 515 image pairs of the same resolu-

tion. The UIEB dataset comprises 890 paired images, from

which 800 are randomly selected for training, and the re-

maining 90 images are used for testing (following [14]).

The SUIM-E dataset includes 1,635 images, with 1,525

used for training and 110 for evaluation (following [27]).
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Table 2. Ablation hardware comparisons with respect to average performance across datasets (Metric denotes the average of that metric

across the 3 datasets used).

Configuration Freq. Attn Freq. Branch Freq. Fusion Chan. Calib Local Attn Global Attn Inference Time (ms) GFLOPs UISM LPIPS BRISQUE

Full Model (FUSION) � � � � � � 128.68 36.73 7.385 0.135 23.797

No Frequency Attention � � � � � � 128.53 36.71 6.395 0.207 27.643

No Frequency Branch � � � � � � 88.89 36.55 5.996 0.255 29.553

No Frequency Guided Fusion � � � � � � 90.29 36.71 6.192 0.226 28.370

No Channel Calibration � � � � � � 128.70 36.73 6.164 0.230 28.517

No Local Attention � � � � � � 75.87 36.69 6.453 0.210 27.627

No Global Attention � � � � � � 110.69 36.72 6.561 0.200 27.167

Spatial Only � � � � � � 89.01 36.55 5.908 0.250 29.320

Minimal Model � � � � � � 18.49 36.49 5.704 0.276 30.607

Table 3. Evaluation on EUVP dataset with the best-published

works for UIE. First, second, and third best performances are rep-

resented in red, blue, and green colors, respectively. ↓ indicates

lower is better.

Method MSE↓ PSNR SSIM UIQM LPIPS↓ UISM BRISQUE↓
UGAN [6] 0.355 26.551 0.807 2.896 0.220 6.833 35.859

UGAN-P [6] 0.347 26.549 0.805 2.931 0.223 6.816 35.099

FUnIE-GAN [10] 0.386 26.220 0.792 2.971 0.212 6.892 30.912

FUnIE-GAN-UP [10] 0.600 25.224 0.788 2.935 0.246 6.853 34.070

Deep SESR [8] 0.325 27.081 0.803 3.099 0.206 7.051 35.179

DWNet [29] 0.276 28.654 0.835 3.042 0.173 7.051 30.856

Ushape [24] 0.370 26.822 0.811 3.052 0.187 6.843 35.648

Lit-Net [27] 0.225 29.477 0.851 3.027 0.169 7.011 32.109

FUSION (Ours) 0.208 28.671 0.862 3.220 0.174 7.048 29.547

To comprehensively assess the visual quality and percep-

tual fidelity of enhanced images, we compare our method

against a range of state-of-the-art (SOTA) underwater image

enhancement (UIE) approaches using both full-reference

and no-reference metrics. These include Peak Signal-to-

Noise Ratio (PSNR), Structural Similarity Index (SSIM),

and Learned Perceptual Image Patch Similarity (LPIPS),

along with perceptual quality measures such as the Under-

water Image Quality Measure (UIQM), Underwater Image

Sharpness Measure (UISM), and Blind/Referenceless Im-

age Spatial Quality Evaluator (BRISQUE). Tables 1 and 3

present a detailed comparison of the quantitative results on

the UIEB and EUVP datasets, respectively.

4.1. Comparison with State-of-the-Art
We present a quantitative and quantitative evaluation

demonstrating that FUSION consistently outperforms com-

peting methods across all evaluated metrics, achieving

state-of-the-art results. In particular, on the UIEB test set

(Table 1), FUSION achieves a PSNR of 23.717 dB and an

SSIM of 0.883, indicating a very high reconstruction fi-

delity and structural similarity. It also records the lowest

LPIPS score (0.112), reflecting superior perceptual quality

and detail preservation. We observe similar trends on the

EUVP dataset (Table 3), where FUSION attains a PSNR

of 28.671 dB and the highest SSIM value of 0.862, along-

side a low LPIPS score (0.174). Figure 6 depicts a bubble

chart illustrating the trade-off between average PSNR and

GFLOPs for various models, further validating the balance

between efficiency and effectiveness of our approach.

Table 4. Comparison with the model parameters and GFLOPs of

SOTA models at an input size of 256× 256. Lower is better. First

best is in red, second best in blue.

Method Parameters (M) FLOPs (G)
WaterNet [15] 24.8 193.7

UGAN [6] 57.17 18.3

FUnIE-GAN [10] 7.71 10.7

Ucolor [20] 157.4 443.9

SGUIE-Net [28] 18.55 123.5

DWNet [29] 0.48 18.2

Ushape [24] 65.6 66.2

LitNet [27] 0.54 17.8

Ours 0.28 36.73

We evaluate the visual quality of our FUSION frame-

work through qualitative comparisons. Figures 4 and 5

show enhancement results for the UIEB and EUVP datasets

alongside outputs from state-of-the-art methods. FUSION

recovers finer structural details and preserves subtle tex-

tures, restoring balanced color distributions and improving

contrast to mitigate underwater distortions like color casts

and low visibility. UIEB and EUVP results (Figure 4) en-

hance natural hues and recover important scene details bet-

ter than competing methods.

In addition to quantitative performance, we also assess

the efficiency of our approach. Table 4 summarizes the

model parameters and GFLOPs for our method compared

to other leading UIE models at an input size of 256×256.

Notably, FUSION achieves superior enhancement results

with a significantly lower number of parameters (0.28M)

and competitive GFLOPs (36.73), justifying its potential for

deployment in real-time and resource-constrained settings.

4.2. Ablation Study
Quantitative Analysis. From the ablation studies across

UIEB and EUVP, it is evident that each architectural com-

ponent contributes meaningfully to overall performance.

Removing frequency attention, branch, or guided fusion

consistently leads to notable degradation in perceptual qual-

ity (higher LPIPS, lower UIQM and UISM), affirming the
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Table 5. Ablation performance on UIEB.

Configuration Freq. Attn Freq. Branch Freq. Fusion Chan. Calib Local Attn Global Attn UIQM UISM LPIPS BRISQUE
Full Model (FUSION) � � � � � � 3.414 7.429 0.112 23.19

No frequency attention � � � � � � 2.978 7.235 0.153 24.81

No Frequency Branch � � � � � � 2.903 6.606 0.231 27.25

No Frequency Guided Fusion � � � � � � 2.961 6.821 0.202 26.34

No Channel Calibration � � � � � � 2.827 6.751 0.214 26.68

No Local Attention � � � � � � 3.005 7.102 0.169 25.22

No Global Attention � � � � � � 3.000 7.268 0.148 24.37

Spatial Only � � � � � � 2.896 6.660 0.225 26.91

Minimal Model � � � � � � 2.720 6.410 0.258 28.43

Table 6. Ablation Study Results on the EUVP Dataset

Configuration Freq. Attn Freq. Branch Freq. Fusion Chan. Calib Local Attn Global Attn UIQM UISM LPIPS BRISQUE

Full Model (FUSION) � � � � � � 3.220 7.048 0.174 29.547

No Frequency Attention � � � � � � 2.839 6.118 0.227 34.21

No Frequency Branch � � � � � � 2.674 5.709 0.249 35.68

No Frequency Guided Fusion � � � � � � 2.665 5.744 0.247 35.53

No Channel Calibration � � � � � � 2.640 5.646 0.252 35.89

No Local Attention � � � � � � 2.538 6.222 0.232 34.51

No Global Attention � � � � � � 2.640 6.392 0.224 33.92

Spatial Only � � � � � � 2.373 5.557 0.261 36.43

Minimal Model � � � � � � 2.106 5.553 0.278 37.21

Figure 6. Bubble chart comparing the trade-off between average

PSNR and GFLOPs for various UIE models

critical role of frequency-aware design in FUSION. Simi-

larly, channel calibration and attention blocks - both local

and global - also drive significant gains, especially in struc-

tural sharpness and perceptual realism. Interestingly, global

attention appears to be particularly vital in retaining fine-

grained global coherence, while local attention improves

texture fidelity. Models stripped of frequency modules or

reduced to spatial-only designs suffer from reduced en-

hancement quality, confirming the synergy between spectral

and spatial representations in underwater image enhance-

ment.

Hardware Efficiency. Beyond accuracy, FUSION

maintains competitive inference efficiency, showcasing a

balanced trade-off between performance and resource foot-

print. The full model runs at 128.68 ms with just 36.73

GFLOPs, which is notably efficient given its multi-branch

design. Ablating the frequency branch or removing atten-

tion mechanisms reduces inference time - e.g., down to

75.87 ms without local attention - but at the cost of perfor-

mance. While the minimal model is fastest at 18.49 ms, it

offers the weakest performance, backing the need for our

architectural complexity to achieve enhancement fidelity.

Overall, FUSION demonstrates that strategic architectural

additions, particularly those exploiting frequency and at-

tention cues, yield meaningful gains without sacrificing de-

ployability in real-time or resource-limited scenarios.

5. Conclusion

We propose FUSION (Frequency-guided Underwater Spa-

tial Image recOnstructioN), a novel dual-domain frame-

work that combines multi-scale spatial feature extraction

with FFT-based frequency processing for underwater im-

age enhancement. Leveraging adaptive attention, FUSION

effectively addresses complex degradations in underwater

scenes. Extensive evaluations on UIEB, EUVP, and SUIM-

E show superior performance across PSNR, SSIM, LPIPS,

UIQM, UISM, and BRISQUE metrics. FUSION also offers

a strong balance between quality and efficiency, making it

ideal for real-time use on AUVs.
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