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Abstract

This work proposes ESPAN, an efficient super-resolution
(SR) network that extracts robust representations with con-
strained parameters by incorporating innovations from
three perspectives: self-distillation and progressive learn-
ing (SDPL), general re-parameterization (GRep), and
frequency-aware loss. In detail, SDPL shares partial blocks
between the student and teacher models and progressively
removes the tail convolutions of the student model, which
contributes to a stable training process and reasonable
convergence. Regarding GRep, we provide a more gen-
eral schema of re-parameterization with interpretable the-
oretical derivation to achieve more flexible expansion of
re-parameterization complexity. The frequency-aware loss
utilizes the discrete cosine transform and a high-pass fil-
ter, enforcing the model to focus more on important high-
frequency areas. The experimental results demonstrate the
effectiveness of the proposed strategies. Overall, ESPAN
exhibits better generality and robustness than previous top-
ranking solutions in the NTIRE ESR challenge (e.g., 0.33
dB higher than SPAN on Manga109) while maintaining in-
ference and restoration performance.

1. Introduction

Single image super-resolution is known to be an ill-posed
inverse problem, and previous works [8, 9, 24, 37, 38, 42]
have come up with many methods which can obtain high
quality HR results under different LR conditions. These
models typically exhibit a high number of parameters
and substantial FLOPs. Efficient super-resolution aims to
achieve favorable subjective performance with constrained
parameters and FLOPs. Previous studies [5, 14, 29, 36,
39, 44] primarily focused on architectural design and re-
parameterization, achieving a balanced trade-off between
model size and subjective performance. We posit that the
key lies in guiding parameter-constrained models to prior-
itize critical regions, such as high-frequency textures, and
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learn more robust features, thereby avoiding gradual over-
fitting to the training set.

Hence, in the process of participating in the NTIRE 2025
Efficient Super-Resolution Challenge, we propose a model
named ESPAN which, we think, can learn more robust fea-
tures from the data with limited parameters. The contribu-
tions of the paper are mainly the following three points:

• We employ self-distillation and progressive learning to
enable model learning more robust features in its back-
bone.

• We provide general re-parameterization from a more in-
terpretable and robust perspective.

• A frequency aware loss is proposed to make the model
pay more attention to important high frequency areas,
which can achieve a higher PSNR.

As shown in Tab. 1, the PSNR results on public test sets
demonstrate that our model exhibits better generalization
than other top-ranking architectures such as SPAN (NTIRE
2024 ESR Top 1) [33]. For example, on the Manga109 [32]
and Urban100 [20] datasets, our method achieves 0.33 dB
and 0.18 dB improvements over SPAN [33], while main-
taining comparable runtime and PSNR performance on the
NTIRE 2025 ESR challenge test set (i.e. LD-test).

2. Related Work

2.1. Efficient Image Super Resolution

To achieve real-time super-resolution (SR) applications, ex-
tensive innovative works have improved the efficiency (run-
time, FLOPs, parameters) of SR models. SRCNN [13] pio-
neered the design of a convolutional neural network (CNN)
to address the SR task. DRCN [25] introduced intense
recursive layers to increase the receptive field and elimi-
nated the need for new parameters from extra convolutions.
DRRN [35] adopted a recursive convolutional network with
parameter sharing, and CARN [2] integrated a cascading
mechanism with the residual network. Unfortunately, the
aforementioned recurrent blocks are computationally inten-
sive. Thus, IDN [22] and IMDN [23] employed informa-
tion distillation blocks to simplify the network structure.
Following the information distillation network, RFDN [30]
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Table 1. Quantitative comparative results of our method and other comparable models on the public test set for ×4 SR are presented. Using
the official provided code, the running time is calculated by averaging the results of three runs on the LD-test dataset on an A100 GPU.

Methods Latency LD-test [1] Set14 [45] BSD100 [31] Manga109 [32] Urban100 [20] Test2k [16]

SPAN (NTIRE 2024 ESR Top1) [36] 6.93ms 27.01 26.59 26.10 27.97 24.17 26.07
R2Net (NTIRE 2024 ESR Top2) [33] 8.53ms 27.00 26.66 26.15 28.16 24.33 26.12

ESPAN 7.05ms 27.00 26.69 26.16 28.30 24.35 26.15

proposed the feature distillation connection (FDC). The im-
plementation of FDC was equivalent to the information
multi-distillation block but was more lightweight and flex-
ible, boasting better SR performance. The above studies
artfully optimized the intricate inter-layer connections to
achieve superior reconstruction results with limited com-
putational resources. Recently, RLFN [26] put forward a
simple model with a shallow-feature-oriented extractor and
improved training strategies. SPAN [36] utilized a novel
parameter-free attention mechanism to focus on high con-
tribution information and suppress redundant information,
thereby attaining a SOTA runtime while maintaining good
image quality.

2.2. Re-parameterization

Re-parameterization has proven effective in high-level vi-
sion tasks [4, 10–12]. Arora et al. [4] found that the
re-parameterization of the fully connected layer could ac-
celerate the training process in deeper networks. AC-
Net [10] employed the asymmetric convolution as a type
of structural re-parameterization. RepVGG [12] parame-
terized a normal 3×3 convolution into parallel branches
with identity mapping, 1×1 operation, and 3×3 convolu-
tion, achieving competitive performance. Diverse Branch
Block [11] explored the different scale representations of
CNNs. However, the success of re-parameterization in
high-level tasks cannot be directly transferred to the field of
SR. Building upon such experimental results, ECBSR [48]
designed an edge-aware filter block without introducing ad-
ditional computation during the inference stage. Recently,
most methods [26, 33, 36, 40, 44] have already adopted
re-parameterization as a universal basic approach in the
field of efficient SR. R2Net [33] further proposed a re-
parameterization module to improve 1×1 convolutions by
expanding the intermediate channel, which exploited the
representation capability of complex structures.

2.3. Information Distillation

Knowledge distillation [18] is a model compression frame-
work with teacher-student networks. The small student net-
work is trained to predict the output of a deep teacher net-
work. As for the task of SR, KDSR [15] calculated and
propagated the intermediate features from the teacher net-
work to the student SR network, which benefits the recon-
struction performance of the efficient student SR model.

Table 2. Quantitative comparisons are made between different ker-
nel sizes of the first convolution. The depth and channels are set to
5 and 32, respectively. The latency is calculated on the LD-valid
dataset [1, 28] using an A100 GPU.

Channel & Depth & Kernel Latency #Params #MACs

c32d5k3 6.12ms 166.9K 10.89G
c32d5k9 6.19ms 173.8K 11.34G

FAKD [17] leveraged the correlation within a feature map
to supervise the training of lightweight student networks.
Inspired by previous methods, PISR [27] designed an im-
itation loss for training the teacher network to enable the
student network to learn the distilled knowledge. Recently,
several studies [26, 30] have adopted information distilla-
tion as a paradigm to achieve super-resolution (SR) with
low computational and memory overhead. Following that,
DIPNet [44] incorporated the re-parameterizable topology
into the feature extraction blocks. SRN [40] added a loss
function between the outputs of the teacher and student
networks to optimize the learning process through explicit
knowledge transfer.

3. Methods

Based on SPAN [36], we propose ESPAN. Through an eval-
uation of the depth-channel combinations in SPAN, we de-
termine that setting the number of channels to 32 results in
higher efficiency, and a depth of 6 is selected. Addition-
ally, a 9×9 convolution is used to replace the conventional
3×3 convolution at the network’s input stage. As shown
in Tab. 2, the 9×9 convolution (denoted as c32d5k9) has
a comparable latency to the 3×3 convolution (denoted as
c32d5k3). This phenomenon may be associated with the
efficient scheduling of the GPU and the fact that cuDNN
may select different yet more efficient algorithms for differ-
ent convolution kernel sizes. Considering that a larger ker-
nel size can expand the model’s receptive field, we choose to
set the kernel size of the first convolution to 9. We aim to en-
able the model with limited parameters to learn more robust
features from three aspects: self distillation and progressive
learning, more generalized re-parameterization, and a loss
function that focuses on important frequencies.
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Figure 1. ESPAN with Self Distillation.

1x1 Conv 3x3 Conv

1x1 Conv

3x3 Conv

x4

Input

Output

+

Genral
Reparameterization

Figure 2. Illustration of the proposed general re-parameterization.

3.1. Self Distillation and Progressive Learning

Inspired by RIFE [21], self distillation is incorporated into
our training pipeline. RIFE [21] demonstrates that certain
intermediate information is more beneficial than extra priv-
ileged information in video frame interpolation (VFI) tasks.
Similar investigations are conducted on super-resolution
tasks. We believe that by sharing backbone components be-
tween the teacher and student models, self distillation can
facilitate the learning of more robust features.

As shown in Fig. 1, the student model is based on SPAN
with 32 channels and a depth of 5. The teacher model shares
the identical backbone as the student model but includes
3 additional SPAB blocks appended to the student’s back-
bone. A self distillation loss analogous to RIFE’s formula-
tion is adopted to co-train the teacher and student networks.

Since the student model contains limited number of param-
eters, we aim to enable the student model to focus more
on the areas that are not recovered as well as those by the
teacher model through the use of a pixel-wise loss mask
M. Specifically, the pixel-wise loss mask M is defined
as Eq. (1) to identify regions where the teacher’s output out-
performs the student’s output,

M = I (|Istu − IGT |, |Itea − IGT |, 0.01) (1)

I (a, b, c) =
{

1 a− b > c
0 else

(2)

where Istu and Itea are outputs of student model and
teacher model respectively, IGT is ground-truth and | · | cal-
culates absolute value. Then self distillation loss Lsd is cal-
culated according to Eq. (3),

Lsd = ||(Itea − Istu) ∗M||2 (3)

where || · ||2 calculates mean square errors.
And the total loss Lall in the self-distillation stage is de-

fined as Eq. (4),

Lall = Lstu + Ltea + 0.001 ∗ Lsd

Lstu = ||Istu − IGT ||1
Ltea = ||Itea − IGT ||1

(4)

where Lstu is the L1 Loss between the output of the student
model and the ground-truth, and Ltea is the L1 Loss be-
tween the output of the teacher model and the ground-truth.

After the self distillation phase, the student loss Lstu and
the self distillation loss Lsd components are removed, and
the entire teacher model is finetuned using the teacher loss
Ltea. As shown in Fig. 3, leveraging the pretrained robust
teacher, progressive learning is employed. The extra convo-
lution layers or SPAB blocks are gradually removed from
the teacher’s backbone. We also attempted to load the self
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Figure 3. ESPAN with Progressive Learning.

distilled model and then increase the model depth one by
one. However, we find that the performance is not as good
as training a deeper model at the beginning and then reduc-
ing the model depth one by one. More details can be found
in Sec. 4.3.1 and Sec. 4.3.2.

3.2. General Re-parameterization

To endow more representative capability to a single convo-
lution, we employ reparamterization strategy [11, 12] that
trains a complex module and infer it as convolution layer via
equivalent transformation. Existing researches [14, 39, 41]
have exploited varied re-parameterizable structures in SR
tasks and achieved remarkable success. However, they are
artificially designed with complicated topology, e.g., resid-
ual in residual [46] block and mobilenet [19] block, mak-
ing them hard to expand. Hence, we propose a general
reparameterization (GRrep) block that simply parallelizes
vanilla convolution, point-wise convolution, and multiple
sequential convolutions as shown in Fig. 2. Given the in-
put x, 3×3 convolution’s weights and bias {w1, b1}, 1×1
convolution {w2, b2}, and several sequential convolutions
(3×3-1×1 and 1×1-3×3) {wkwk/wkwk, bk}, the output
y of GRep {w, b} can be calculated by:

y =

3×3 Conv︷ ︸︸ ︷
w1x+ b1 +

1×1 Conv︷ ︸︸ ︷
w2x+ b2 +

SeqConv︷ ︸︸ ︷∑
k∈K

wkwkx+ bk

=

[
w1 + w2 +

∑
k∈K

wkwk

]
︸ ︷︷ ︸

Rep weight

x+

[
b1 + b2 +

∑
k∈K

bk

]
︸ ︷︷ ︸

Rep bias

.

(5)
Inspired by [7], we further exhibit the weight updating

process to show how the proposed GRep influencing train-
ing. Specifically, by chain rule, ∇w(t) = ∇

w
(t)
1

= ∇
w

(t)
2

=

(w
(t)
k )−1∇

w
(t)
k

, we can abstract GRep training procedure as

using time varying momentum γ(t) for its complex sequen-
tial convolution and adaptive learning rate ρ(t):

w(t+1) = w
(t+1)
1 + w

(t+1)
2 +

∑
k∈K

w
(t+1)
k w

(t+1)
k

← [ w(t)
1 − η∇

w
(t)
1

+ w
(t)
2 − η∇

w
(t)
2

+
∑(

w
(t)
k − η∇

w
(t)
k

)(
w

(t)
k − η∇

w
(t)
k

)
= w(t) − η

(
∇

w
(t)
1

+∇
w

(t)
2

+
∑

w
(t)
k ∇w

(t)
k

+
∑

w
(t)
k ∇w

(t)
k

)
+O(η2)

= w(t) − η

(
2 +

∑
k∈K

(w
(t)
k )2

)
∇w(t) − η

∑
k∈K

∇
w

(t)
k

w
(t)
k

= w(t) − ρ(t)∇
w

(t)
k

− γ
(t)
K w

(t)
K .

(6)
Since (w

(t)
k )2 ⩾ 0, we can observe the learning rate γ(t) =

η(2 +
∑

k∈K(w
(t)
k )2) is correspondingly increasing when

using more sequential convolution in Eq. (6), enabling a
faster convergence. Moreover, the optimization of each ad-
ditional wk will be calibrated with a time-related momen-
tum γ

(t)
k = η∇

w
(t)
k

to guide better updating orientation and
suppress oscillations. Compared to existing reparameteriza-
tion methods, the proposed GRep is more interpretable and
ensures the flexibility and robustness to expand or squeeze
with varying complexities.

3.3. Frequency-Aware Loss Function

Frequency-domain analysis has already been widely con-
sidered in the field of super-resolution (SR) [3, 9]. To en-
hance the ESPAN network’s capability to reconstruct high-
frequency (HF) texture details, we incorporate a frequency-
aware loss function into ESPAN. Specifically, we extract
high-frequency information through a Gaussian Blurring
operation. The residuals before and after filtering are used
to simulate details that are difficult for ESPAN to recover.
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Moreover, we constrain the aforementioned residuals dur-
ing training. The HF loss is formulated as follows:

LHF =
∥∥(IHR − B(IHR))− (ISR − B(ISR))

∥∥
1
, (7)

where IHR and ISR indicate the ground-truth high-
resolution (HR) image and reconstructed SR image, B(·)
denotes a 5×5 kernel Gaussian Blur process. Further-
more, we compute the loss between HR and SR images
in the Discrete Cosine Transform (DCT) frequency domain
to ensure that different frequency components are treated
equally, thereby effectively preserving high-frequency (HF)
visual details. Compared with other frequency representa-
tion methods, e.g., Fast Fourier Transform (FFT), (Discrete
Wavelet Transform) DWT, the energy of DCT is more con-
centrated and can better preserve the local characteristics
of images. The results of subsequent ablation studies also
demonstrate this point. Specifically, the DCT loss is formu-
lated as follows:

LDCT =
∥∥DCT(IHR)− DCT(ISR)

∥∥
1
. (8)

The overall frequency-aware loss function of the pro-
posed ESPAN network is defined as:

L = L2 + αLHF + βLDCT , (9)

where the weight parameters α and β are empirically preset
to 1 and 0.001. LDCT switches the loss calculation to the
frequency domain, encouraging the model to better preserve
different frequency components, while LHF encourages the
model to preserve high-frequency parts. Through the afore-
mentioned loss function, ESPAN becomes more adept at
capturing structural information for reconstructing finer de-
tails.

4. Experiments
4.1. Settings

4.1.1 Implementation Details

To achieve a better trade-off between running time and
restoration quality, we determine the optimal number of
blocks and the number of channels through grid search-
ing. As shown in Tab. 4, a configuration with 32 channels
is more cost-effective than those with 28 and 30 channels.
This is because NVIDIA GPU data is generally aligned in
multiples of 32. When the channel is set to 32, it can be
better stored and read in an aligned manner. The GPU can
retrieve data from the memory more efficiently, reducing the
number of memory accesses and latency. Regarding model
depth, slightly increasing the model depth increases the la-
tency but effectively improves the PSNR. To this end, we
develop an ESPAN with 32 channels and a depth of 5 or 6
for efficiency.

4.1.2 Datasets and Metrics

Following [29, 33, 41], we leverage a mixed dataset of
DIV2K [1] and LSDIR [28] to train ESPAN, comprising a
total of 85791 high-quality images. Low-resolution (LR)
images are synthesized via bicubic interpolation. Dur-
ing the test phase, PSNR and SSIM [43] are employed
to assess super-resolution performance on several widely
used benchmark datasets, including LD-valid [33], Set5 [6],
Set14 [45], B100 [31], Urban100 [20], Manga109 [32],
Test2K [16], and Test4K [16].

4.1.3 Training Details for NTIRE 2025 ESR

I. At the first stage, we employ self distillation to train the
teacher model.

• Step 1. We first train a 2× super-resolution model. HR
patches of size 256×256 are randomly cropped from HR
images, and the mini-batch size is set to 64. L1 loss and
self distillation loss with AdamW optimizer are used and
the initial learning rate is set to 0.0001 and halved at every
100k iterations. The total iterations is 500k. This step is
repeated twice. And then we follow the same training
setting and use 2× super-resolution model as pretrained
model to train a 4× super-resolution model. This step is
repeated twice.

• Step 2. HR patches of size 512×512 are randomly
cropped from HR images, and the mini-batch size is set
to 16. MSE loss, frequency-aware loss and self distilla-
tion loss with AdamW optimizer are used and the initial
learning rate is set to 0.0001 and halved at every 100k it-
erations. The total iterations is 500k. This step is also
repeated twice.

• Step 3. We only train the teacher model. HR patches
of size 512×512 are randomly cropped from HR im-
ages, and the mini-batch size is set to 16. MSE loss and
frequency-aware loss with AdamW optimizer are used
and the initial learning rate is set to 0.00005 and halved
at every 100k iterations. The total iterations is 500k. This
step is also repeated twice.

II. At the second stage, progressive learning is applied to
derive the final student model.

• Step 4. We drop the additional convolution layer or SPAB
block gradually. In the procedure, HR patches with size
512×512 are randomly cropped from HR images, and the
mini-batch size is set to 16. L1 loss with AdamW opti-
mizer are used and the initial learning rate is initialized
as 0.0001 and halved at every 100k iterations. The total
iterations is 500k.

• Step 5. We repeat the following training process many
times until convergence. HR patches of size 512×512 are
randomly cropped from HR images, and the mini-batch
size is set to 16. MSE loss and frequency-aware loss with
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Table 3. Quantitative comparison (average PSNR/SSIM on RGB, Parameters, MACs, Latency, Memory Footprint, and Activations) with
state-of-the-art approaches for efficient image SR (×4). Overall best results are in bold. MACs are measured under the setting of the input
image to 256×256. Latency and Memory footprint are reported on the DIV2K-valid [1] dataset with Tesla V100.

Methodss
Latency Para MACs Mem Acts DIV2KV [1] Test2K [16] Test4K [16]

(ms) (K) (G) (M) (M) PSNR/SSIM PSNR/SSIM PSNR/SSIM

PCEVA [49] 20.9 402 24.73 372.5 72.09 28.68/0.8104 26.01/0.7511 27.41/0.7981
EFDN [39] 20.4 276 16.73 710.0 111.12 29.00/0.8187 26.17/0.7580 27.63/0.8049

ECBSR [47] 19.7 622 40.66 231.6 77.59 28.86/0.8190 26.13/0.7564 27.57/0.8033
FMEN [14] 18.2 341 22.28 205.9 72.09 29.00/0.8190 26.17/0.7586 27.62/0.8051

QuickSRNet [5] 15.3 436 28.51 296.5 56.62 28.78/0.8140 26.08/0.7552 27.49/0.8019
PFDN [29] 16.3 272 16.76 344.3 65.10 28.95/0.8176 26.17/0.7578 27.63/0.8047
DIPNet [44] 16.0 243 14.90 550.4 72.97 29.04/0.8184 26.11/0.7550 27.52/0.8018
R2Net [33] 14.3 215 13.04 306.7 52.52 28.91/0.8162 26.12/0.7561 27.57/0.8029
SPAN [36] 14.2 151 9.83 705.2 41.68 28.87/0.8143 26.07/0.7539 27.48/0.8005

ESPAN 14.0 192 12.56 1795 48.08 28.89/0.8159 26.15/0.7569 27.58/0.8033

Table 4. Quantitative comparisons are made between differ-
ent block configurations and depth numbers on the LD-valid
dataset [1, 28]. For fairness, all models are retrained under the
same settings. The latency is calculated using an A6000 GPU.

Channel & Depth Latency #Params #MACs LD-valid

c28d6 [36] 15.25ms 150.7K 9.84G 26.72
c24d6 14.52ms 112.4K 7.33G 26.66
c24d7 15.41ms 128.0K 8.00G 26.69
c22d7 14.95ms 108.4K 6.78G 26.65
c22d8 15.57ms 121.6K 7.64G 26.68
c28d5 15.21ms 129.4K 8.45G 26.68
c30d5 15.26ms 147.6K 9.63G 26.71
c32d5 14.56ms 166.9K 10.89G 26.73

AdamW optimizer are used and the initial learning rate is
set to 0.00005 and halved at every 100k iterations. The
total iterations is 500k.

Quantitative comparison of the ESPAN and the baseline
of NTIRE 2025 ESR Challenge is shown as Tab. 5.

4.2. Comparative Results

4.2.1 Quantitative Comparison

Following [41], we compare the ESPAN with more efficient
SR models in Tab. 3, including PCEVA [49], EFDN [39],
ECBSR [48], FMEN [14], QuickSRNet [5], PFDN [29],
DIPNet [44], R2Net [33], and SPAN [36]. In particular,
we utilize DIV2K [1], Test2K [16], and Test4K [16] for
evaluation to avoid the over-fitting on the dataset of the
challenge. Generally, our ESPAN performs a better robust-
ness than recent NTIRE solutions. Specifically, compared
to EFDN [39], the SPAN drops 0.1dB on Test2K while the
proposed ESPAN slightly degrades with 0.02dB.

4.2.2 Qualitative Comparison

We present a visual comparison of ESPAN with SPAN [33]
and R2Net [33] in Fig. 4. By learning more robust features
and focusing on critical high-frequency regions, our method
produces fewer artifacts and reconstructs periodic textures
closer to the ground truth (first and second rows of Fig. 4).
Additionally, outlines in text and facial regions (last three
rows of Fig. 4) are sharper and more defined.

4.3. Ablation Studies

We conduct extensive ablation studies to analyze the contri-
butions of individual components in proposed methods.

4.3.1 Effect of Self Distillation

To demonstrate the effect of self distillation, we compare
the training settings with and without self distillation. As
shown in Fig. 5, the training process with self distil-
lation converges faster than that without self distillation
and achieves a higher PSNR on the validation set. The
teacher model with more parameters can learn better super-
resolution results from the ground truth. However, sim-
ply using the teacher model’s output to guide the student
model’s output is difficult. Sharing some parts of the back-
bone between the teacher model and the student model en-
ables the student model to learn knowledge more easily
since it has a similar feature representation to the teacher
model. And this is what we consider to be robust features
for both the student model and the teacher model.

4.3.2 Effect of Progressive Learning

We leverage checkpoints during training to demonstrate
the effectiveness of the proposed progressive learning. As
shown in Fig. 1, after self-distillation training, a teacher
model and a student model sharing the first 5 SPAB blocks
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Table 5. Comparisons between ESPAN and the baseline of the NTIRE 2025 ESR on
the LD-valid/test [1, 28]. The data is sourced from official report [34].

Model Runtime[ms] #Params[M] FLOPs[G] LD-valid PSNR LD-test PSNR

Baseline 22.18 0.27 16.70 26.93 27.01
ESPAN 9.51 0.19 12.56 26.90 27.00

Table 6. Comparision of different training set-
tings for progressive learning.

Training Setting Validation PSNR

d5d6d6 26.847
d5d7d6 26.850

LR SPAN [33] R2Net [33] ESPAN (Ours) HR

Figure 4. Visual comparison of ESPAN with other top ranking methods of the NTIRE 2024 ESR Challenge for the ×4 super-resolution
(SR) task on the public datasets.

are obtained. Two training settings are considered. One
is loading the shared 5 blocks, increasing the depth to 6,
and training for additional iterations (denoted as d5d6d6).
The other is loading the shared 5 blocks, increasing the
depth to 7, and then decreasing the depth to 6 (denoted as
d5d7d6). As indicated in Tab. 6, d5d7d6 slightly outper-
forms d5d6d6, suggesting that initializing with a deeper
model and gradually condensing it into a smaller architec-
ture may yield better results by retaining more informative
features.

4.3.3 Effect of General Re-parameterization

To evaluate the effectiveness of the proposed general repa-
rameterization (GRep), we compare it with existing repa-
rameterization approaches (RepVGG [12], RRRB [14], and
RepMBConv [41]) by applying them to the proposed ES-
PAN under the same training settings. As shown in Tab. 7,
even the simplest GRep [1,0] surpasses other reparameteri-
zable blocks. Moreover, the proposed GRep achieves faster
convergence and higher PSNR with an increased number
of SeqConvs. Specifically, using 4 SeqConvs, the PSNR
of the model reaches 26.67 dB within 300k iterations, out-
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Table 7. Ablation study of proposed general re-paramterization.

Methods 3×3 1×1 Identity SeqConv 300k/500k

Vanilla Conv ✓ 26.355/26.484
RepVGG [12] ✓ ✓ ✓ 26.563/26.618

EDBB [39] ✓ ✓ ✓ 5 branches 26.658/26.689
RRRB [14] Residual in Residual Block 26.620/26.677

RepMBC [41] MobileNetv3 Block 26.605/26.663

✓ ✓ [1,0] 26.633/26.690
✓ ✓ [2,0] 26.672/26.707

GRep ✓ ✓ [4,0] 26.674/26.705
✓ ✓ [2,2] 26.669/26.709
✓ ✓ [0,4] 26.672/26.700
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Figure 5. Validation PSNR during the training process.
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Figure 6. Validation PSNR with varied repconv during training.

performing vanilla convolution by 0.31 dB or saving 40%
training time compared to RRRB. We also compared var-
ied SeqConv ([a,b] represents a 1×1-3×3 and b 3×3-1×1).
The GRep with [4,0] achieves the highest PSNR in 300k
training iterations, while GRep with [2,2] negligibly outper-
forms other permutations. In Fig. 6, we visualize the PSNR
curve of training process for more comprehensive compari-

Table 8. Ablation study of the frequency-aware loss.

Methods PSNR Methods PSNR

L1 Loss 26.609 HF Loss 16.740
L2 Loss 26.592 DCT Loss 26.570

L1 + HF Loss 26.622 L1 + FFT Loss 26.598
L1 + DCT Loss 26.636 L1 + DWT Loss 26.619

L1 + HF + DCT Loss 26.641 L2 + HF + DCT Loss 26.658

son, where the proposed GRep surpasses RepMBConv and
improves with the expanded number of sequential convolu-
tion. Overall, GRep provides approximately 0.32 dB im-
provement over vanilla convolution.

4.3.4 Effect of Frequency-Aware Loss Function

To evaluate the effectiveness of different combinations of
the proposed high frequency (HF) loss and discrete cosine
transform (DCT) loss fairly, a series of ablation studies are
conducted. Specifically, we conduct × 4 super-resolution
(SR) experiments on the validation dataset of the NTIRE
2025 ESR challenge. Each ablation branch has the same
network architecture and training strategy and only the loss
function is changed. As can be seen from Table 8, directly
replacing the L1 or L2 loss with a frequency-domain loss
will result in a degradation of performance. Especially, the
HF loss leads to the failure of training and we depict inter-
mediate results. Introducing the HF loss and DCT loss im-
proves the baseline by 0.013 dB and 0.027 dB, respectively.
For other frequency-domain transforms, the DCT loss per-
forms better than the FFT and DWT loss as it processes
in a block-wise manner that better preserves local correla-
tion. Notably, when directly replacing the L1 loss with the
L2 loss, the reconstruction quality decreases. Overall, the
combination of the L2 loss and the frequency-aware loss
achieves the best restoration quality. These results indicate
that the proposed frequency-aware loss can effectively en-
hance the ESR reconstruction performance by preserving
more structural high-frequency details.

5. Conclusion
In this paper, we propose ESPAN, which learns more robust
features from general reparameterization, frequency-aware
loss, self-distillation, and progressive learning. Quantita-
tive results show a better convergence curve during training,
competitive PSNR on the test set of the challenge, and bet-
ter generalization capabilities on other public test sets. We
believe ESPAN demonstrates that studying loss functions,
reparameterization, and knowledge distillation can also be
very helpful in exploring the potential of efficient super-
resolution compared to studying model structure. We hope
the proposed ESPAN can enlighten more research in effi-
cient SR in the future.
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